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Abstract 
This paper proposes a new fast matching pursuit technique named Partially 
Known Least Support Orthogonal Matching Pursuit (PKLS-OMP) which 
utilizes partially known support as a prior knowledge to reconstruct sparse 
signals from a limited number of its linear projections. The PKLS-OMP 
algorithm chooses optimum least part of the support at each iteration without 
need to test each candidate independently and incorporates prior signal 
information in the recovery process. We also derive sufficient condition for 
stable sparse signal recovery with the partially known support. Result shows 
that inclusion of prior information weakens the condition on the sensing 
matrices and needs fewer samples for successful reconstruction. Numerical 
experiments demonstrate that PKLS-OMP performs well compared to existing 
algorithms both in terms of reconstruction performance and execution time. 

Key words: Compressed sensing, Least Support Orthogonal Matching Pursuit, 
Partial Knowing Support, signal reconstruction, Restricted 
Isometry Property. 

1 Introduction 

Compressed sensing (CS) stands for a linear underdetermined problem, 
where the underlying sampled signal is sparse. The challenge in CS is to re-
construct this sparse signal from few measurements as possible as it could.  

The standard CS theorem is based on a sparse signal model and uses an 
undetermined system of linear equations [1]. Linear Programming (LP) tech-
niques are good for designing computationally CS decoders, but it shows kind 
of complexity for many applications. Therefore, the need for the faster decod-
ing algorithms is necessary, even if a procedure increases the number of mea-
surements. Several low complexity reconstruction methods are used nowa-
days as an alternative method for LP recovery. Some of these include: Convex 
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Optimization: like Basis Pursuit (BP) and  Basis Pursuit De-Noising (BPDN), 
Iterative Greedy Algorithms like Matching Pursuit (MP), Orthogonal Match-
ing Pursuit (OMP), the Regularized OMP (ROMP), and Compressive Sam-
pling Matching Pursuit (CoSaMP).  Iterative greedy depends on its search 
method upon an estimation of the implicit support set of a sparse vector [2]. 
For example, CoSaMP algorithm is based on the idea of iteration to find the 
approximation of the original signal. In each iteration, the current approxima-
tion produces a residual, which it is the part of the treated signal that has not 
been approximated yet [3].  

The simple idea behind the usage of greedy method is to find the support 
for unknown signal sequentially. The support set contains indices of non-zero 
elements of a sparse vector [4]. At each iteration, OMP greedy algorithm uses 
one or several coordinates of input signal vector x, that are selected using the 
maximum correlation value between the columns of Φ and the measurement 
vector. The candidates will be added to the currently estimate support set of  
x. The pursuit algorithm repeats this procedure several times until all the 
coordinates are arranged in the evaluated support set. 

The computational complexity of the OMP depends on the number of ite-
rations necessary for the exact signal reconstruction; simple OMP always runs 
through  K iterations. Although complexity is smaller comparing with that of 
LP methods [5], sparsity of the signal plays an important role in the complexi-
ty of the OMP especially when the signal being recovered is not very sparse. 

Recently, CS methods have been expanded by including partially known 
support in the recovery process. Theoretical and numerical experiments show 
that CS with partially known support can reduce the number of measurements 
required for exact or approximated recovery. Vaswani and Lu [6] used this 
technique for recovering of dynamic magnetic resonance imaging (MRI). 
Carrillo [7]-[8] exploited prior information for iterative algorithms. 

In this paper, we focus on a fast greedy algorithm including partially 
known support.  Exact reconstruction using fewer measurements is the pur-
pose of the current work. The proposed algorithm has less computational 
complexity and faster than the standard OMP and Orthogonal Matching Pur-
suit with Partially Known Support [7] (OMP-PKS). We also derive conditions 
for stable sparse signal recovery with the partially known support. Theoretical 
analysis shows that exploiting prior information provides much weaker condi-
tions for successful reconstruction. Simulations results demonstrate that the 
Partially Known Least Support Orthogonal Matching Pursuit (PKLS-OMP) 
outperforms commonly employed sparse reconstruction techniques and inclu-
sion of the partially known support reduces the number of measurements for 
signal reconstruction. 

The organization of the rest of the paper is as follows: Section 2 gives a 
brief review of the OMP and the OMP-PKS algorithms. In Section 3, the 
PKLS-OMP algorithm is proposed and its properties are analyzed. Numerical 
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experiments evaluating the performance of the proposed algorithms are pre-
sented in Section 4. Finally, in Section 5, we give conclusions and future 
works. 

2 Preliminaries 

2.1 OMP algorithm 

Notations: let	x be a sparse signal, the arbitrary vector 
x � �x�, x� … . . , x���, let the support set � � 	 ��,�… . , ��   denotes the set of 
nonzero component indices of x (i.e up�x� � �i|x� � �� ),	A� ∈ ���|�| con-
sists of the columns of A with indices	i ∈ I, A∗ denotes the transpose of A, and 
A� denotes the pseudo-inverse {�A∗A���A∗ }. 

Let us declare the standard CS problem, which achieves a signal x ∈ ��, 
have a K sparse input, via the linear measurements, 

                                                y � Φx							                                                 (1) 
where Φ ∈ ���� represents a random measurement (sensing) matrix, and 
y ∈ �� represents the compressed measurement signal. A K sparse signal 
vector consists of most K nonzero indices. With the setup of K � � � �, the 
task is to reconstruct x	from y (as x� ) using a small number of measurements 
in addition to  achieve good reconstruction qualification [5], [9].  

We note that the compressed measurement signal y is the linear combina-
tion of at most K atoms (atom means a column of measurement matrix). One 
condition for the sparse signal recovery is to use the Mutual Incoherence 
Property (MIP) [10]. The MIP requires the correlations among the column 
vectors of  Φ to be small. 
The coherence parameter  μ of sensing matrix is defined as, 

                                         μ � ��x���〈φ�, φ�〉,                                          (2) 
where φ�, φ� are two columns of Φ with a unit norm.  
For the noiseless case when	Φ is a series of two square orthogonal matrices, 
that 

                                          K � �
� �

�
����                                               (3) 

guaranties the exact recovery of  x�  when x�  has at most K nonzero en-
tries (such a signal is called �-sparse) [11]-[13].  

2.2 OMP-PKS  

OMP-PKS is derived from the classical OMP. In this algorithm, some sig-
nal components are more important than the others are and should be kept as 
nonzero components. That is prior support information is available from the 
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prior knowledge, e.g. the lowest sub band wavelet coefficients are selected as 
nonzero components without testing them for correlation [7], [13]-[14]. Com-
pared with the OMP, the OMP-PKS can recover	� with the low measurement 
rate. 

The OMP-PKS algorithm is shown in Algorithm 1 [13]-[14]. 

Algorithm 1 OMP-PKS algorithm 
Input: 
  	MxN measurement matrix Φ � �φ� φ� … . .φ�� 
   M� �  compressed measurement vector,  y 
 Set of indexes  of  LL� coefficients subband (i.e � � �) , 

Γ � �γ�	γ� … . . γ|Γ|� 
 K  Sparsity level  
Output: 
 Recovered signal,	��  
 Set that includes k nonzero indices in  �̂,	Λ � ���	�� … . . ��� 
Procedure: 
Phase1: selection  without correlation test, 

a- Choose all element in LL�  
         � � |Γ| ,     Λ� � Γ ,         Φ� � �φ��	φ�� … . .φ��� b‐ find least square for  reconstructed signal ��	�� � ���	���� ‖� � Φ�Z‖�	

c- find new approximation, ��,  where �� is the projection of	� on 
Φ�; calculate the residual �� �� � Φ���  ;       �� � � � �� 

Phase 2: reconstruct using the OMP, 
a- increment � (i.e � � � � �), halt if    � � �  
b- calculate index  �� for basis φ� which has the highest correlation 

with residual of previous iteration ������ 
            �� � �����x����,��,��Λ��� �〈����,φ�〉�  
c- increase the index set of selected basis and also increase its ma-

trix 
Λ� � Λ��������   ;      Φ� � �Φ���	φ��� d‐ find least square for  reconstructed signal ��	�� � ���	���� ‖� � Φ�Z‖�	

e- find new approximation, �� ,  and  calculate the residual �� �� � Φ���  ;       �� � � � �� 
f- return to a 
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Lemma 1 [11] Consequences of Restricted Isometry Property (RIP): 
� ⊂ Ω, ��	�|�| � �	 then for any � ∈ �|�|,  

              �� � �|�|�‖�‖� � ‖Φ��Φ��‖� � �� � �|�|�‖�‖�,                        (4) 
                �

����|�|� ‖�‖� � ‖�Φ��Φ�����‖� � �
����|�|� ‖�‖�                        (5) 

Lemma 2 [11] For disjoint sets ��, �� ⊂ Ω, ��	�|��|�|��| � �	 then, 
                �Φ��

� Φ�� � ��Φ��
� Φ������� � �|��|�|��|‖�‖,                            (6) 

Lemma 3 [10] For all �, �′ ∈ �� supported on disjoint subsets ��, �� ⊂ Ω, 
                               |〈Φx,Φx′〉 �|�|��|�|��|‖�‖‖�′‖                                  (7) 

Lemma 4 [10] Consequence of restricted orthogonality constant: for two 
disjoint sets ��, �� ⊂ Ω , let �|��|,|��| be the |��|, |��| -restricted orthogonality 
constant of Φ. If |��| � |��| � �, θ|��|,|��|�, is the smallest number that satisfies 

                                            �Φ��
� Φ��x��� � θ|��|,|��|

‖x‖.                           (8) 
Lemma 5 [10] If Φ satisfies the RIP of both orders �� and ��, then 

��� � ���  for any �� � ��. This property is referred as the monotonicity of 
the isometry constant. 

Lemma 6 [10] For two disjoint sets I�, I� ⊂ Ω with	|I�| � |I�| � �, 
θ|��|,|��| � δ|��|,|��|     

Definition 1 [5] Let  y ∈ R�  and  Φ� ∈ R��|�|, let Φ�∗Φ� be invertible ma-
trix, the projection of y onto span (Φ�) can be defined as, 

                                  y� � �r���y,Φ�� � Φ�Φ��y                                   (9) 
                                         Φ�

� � �Φ�∗Φ����Φ�∗  
where Φ�

� represents the pseudo inverse of matrix Φ� and * denotes  the 
transpose of Φ�. Residue vector of the projection can be found as: 

                                  y� � resid�y,Φ�� � y � y�.                                  (10) 
Lemma 7 [1] Residue Orthogonality : if a vector y ∈ R� and  Φ� ∈ R���  

represents sampling matrix which has full column rank, and y� �resid�y, Φ��, then 
                                        Φ�∗y� � �                                               (11) 

Lemma 8 [1] Approximation of Projection Residue: consider 
Φ� ∈ R���, if  I, � ⊂ 	 ���� 	��  are two disjoint set (i.e.	I � � � �) 
and let �|�|�|�| � � suppose � ∈ ����	�Φ��, �� � ������,Φ�� , 
�� � �������,Φ�� ,   then    

                                             �y��� �
δ|�|�|�|

��δ���	�|�|,|�|�
‖y‖�.             (12) 
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3 PKLS-OMP 

In this section, we introduce the proposed PKLS-OMP algorithm. Algo-
rithm consists of two parts: LS-OMP and PKLS-OMP. Figure 1 shows a 
block diagram of the LS-OMP. The algorithm selects an atom for the current 
iteration by testing influence of this selection on the future iterations. An ele-
ment is chosen at the beginning of the calculation by finding a set of maxi-
mum correlation between ϕ and whole signal matrix. This way is faster since 
it requires less number of iterations L<K. LS-OMP achieves better assessment 
for underlying support set through iterations without need to test each poten-
tial independently. 

 

Figure 1. Block diagram of  LS-OMP method 

Theorem 1 below, shows theoretical stability guarantees of the LS-OMP. 
Theorem 1: 

If � is a sparse signal and  x � �� , � is measurement vector  y � Φx ,	Φ 
is sampling matrix satisfies RIP condition, then � can be recovered if : 

                               �y � y�ℓ�� �
δ��

���δ��
�y�ℓ����                              (13) 

where L represents a part of support that will be used as a least support to 
reconstruct the original signal its range is limited by the stopping condition 
suggested in eq.(13). ℓ represents the current iteration while ℓ � � is the pre-
vious iteration ,assume 	δ�� � ����. 

Our proof of Theorem 1 appears in the Appendix A. 
The LS-OMP algorithm recovering an estimate of the signal	x is specified 

in Algorithm 2.    

Algorithm 2 LS-OMP Algorithm for Signal Recovery  
Input: 
 NxM measurement matrix	Φ 
 N � �  compressed measurement vector,  y 
 Sparsity level K of the sparse signal 
 L  Least Support Parameter 
Output: 
 An  X���� reconstructed signal, new set of nonzero Aug_p����� 
Procedure: 

Corre-
lation test 

Update 
support set �ℓ 

Update 
residual, ���ℓ 

�������ℓ�� L- times 
L<K 
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1) Initialize the residual, res� � y, support set  �� � � , Least Support set 
�� � �  , and the iteration counter ℓ � � 

2) find the maximum value of auto correlation  between y and Φ  
�ℓ � argmaxℓ��…��resℓ��φℓ�  
3) union the set of Φ matrix column indexed by J,  and previous support of 

size l 
 Iℓ � �Iℓ�� ∪ Φ��         
4) find the new augment value ���_� � �ℓ� � �  ( Iℓ� denotes the pseudo-

inverse operators of set Iℓ) 
5) find new residual value ���ℓ � � � ���_� � Iℓ 
6) if stopping condition  �y � y�ℓ�� �

���
������ �y

ℓ����, is correct  then update 
position set from [1,L] to [1,	ℓ ] and go to step (9)   , 

7) upgrade the value of  resℓ�� � resℓ and    Iℓ��=Iℓ 
8) increment  ℓ =	ℓ +1 and return to step (2) 
9) the reconstructed sparse signal  �����  has nonzero indices at the indexes 

listed in Aug_p�����. 
In the second part of the PKLS-OMP algorithm, the prior signal informa-

tion is incorporated in the recovery process. A Discrete Wavelet Transform 
(DWT) is used to sparsify the signal and all the components in low sub band 
are selected as nonzero components. The PKLS-OMP algorithm for the data 
represented in the wavelet domain is shown in Algorithm 3: 

Algorithm3: PKLS-OMP Algorithm for Signal Recovery  
Input: 
 NxM	measurement	matrix	Φ	
 N � �		�ompressed	measurement	ve�tor,		y	
 Sparsity	level	K	of	the	sparse	signal	
 L		Least	Support	Parameter	
 T�		Set	of	indexes		of		LL�	
Output: 
 An  X���� reconstructed signal, new set of nonzero Aug_p����� 
Procedure: 
1) Initialize the residual , res� � y , 
support set:	T� � �T��, T�� …T�|��|�  
            least Support set:  J� � �   
            number of Iteration: ℓ =0 
2) support size: Sup_size=|T�| 
3) φ� � �φ�	φ�. . φ|��|�  
4) find resℓ � y � φ��y  
5) index=T�, I� � φ�  
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6) increment ℓ =	ℓ +1 
7) find the maximum value of auto correlation  between resℓ and Φ,  
Jℓ � �rg��xℓ�����φℓ

∗resℓ���  
8) augment the index set and matrix of chosen atoms indexed by J, Iℓ �

�Iℓ�� ∪ Φ��,        
9) find the new augment value Aug_p � Iℓ� � y  ( Iℓ� denotes the pseudo-

inverse operators of set Iℓ) 
10)  find new residual value resℓ � y � Aug_p � Iℓ 
11)  update index,  index�|T�| � ℓ� � J�ℓ� 
12)  if the termination condition ‖y�‖� � ���

������� ‖y‖�, update the position set 
from [1,L] to [1,	ℓ ] and go to step (15 ), 

13)  upgrade the value of  resℓ�� � resℓ  and    Iℓ��=Iℓ,    
14)  return to step (6) if iteration number  ℓ � �,   
15)  the reconstructed sparse signal  X����  has nonzero indices at the index 

listed in Aug_p�����, arrange the value of  Aug_p in the position listed by J. 
      X�����index	�	� � 	 |T�| � ℓ	�� � Aug_p�����    

We propose two different theorems, Theorem 2 and 3, to show the theoret-
ical stability guarantees of the PKLS-OMP in terms of the RIP of Φ.  
Theorem 2: 

If � is sparse signal and  x � �� , � is measurement vector  y � Φx ,	Φ is 
sampling matrix satisfies RIP condition, then � can be recovered if 

                           ‖y�‖� � δ��
���δ��� ‖y�‖,                                                     (14)  

for 0.005 � ��� � 0.025. 
proof of Theorem 2 explain  in the Appendix B. 

Theorem 3 
If � is sparse signal and  x � �� , � is measurement vector y � Φx ,	Φ is 

sampling matrix  satisfies RIP condition,  then � can be recovered if : 
                                    ‖�‖� � �����

����������� ‖��‖�               (15) 
for 0.005 � ��� � 0.025. 
proof of Theorem 3 appears in the Appendix C. 
 
A sufficient condition for stable recovery of the LS-OMP algorithm is 

	δ�� � 0.��	(Theorem 1), which is a stronger condition than	0.005 � δ�� �0.025	required by PKLS-OMP with Theorem 2 and Theorem 3. Having a 
smaller RIP means that Φ requires fewer rows to meet the condition, i.e., few-
er samples to achieve approximate reconstruction [8].  
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4 Experimental results 

In this section, we present numerical experiments that explain the effec-
tiveness of the PKLS-OMP for sparse and compressible signals.  

Sensing matrice Φ has i.i.d. entries drawn from a standard normal distribu-
tion with normalized columns. The reconstructed signal to noise ratio (R-
SNR) is used to measure performance of the reconstructed signal. R- SNR is 
defined as 

                             � � ���� � �������� ‖�‖��
‖����‖��                                 (16) 

where � and ���denote the N-dimensional original and reconstructed signals, 
respectively. 

In the first experiment, we generate a random sparse signal having length 
N=1024 with K=200 nonzero entries (Figure 2 (a)). The location of the nonze-
ro entries are selected randomly using standard Gaussian distribution, the RIC 
value for LS-OMP=0.495, and for PKLS-OMP =0.002, the prior support in-
formation T0=64. Figure 2 (b) compares the three proposed theorems and 
OMP-PKS for different number of measurements. Notice that inclusion of the 
prior information improves the reconstruction performance. That is the PKLS-
OMP and the OMP-PKS  perform better than the LS-OMP but it is obvious 
that  the PKLS-OMP (Theorem 2 and 3) gives best result for all measurement 
rates.  

 

 
(a) 



120

Least Support Orthogonal Matching ...   

86 

The second experiment shows the effectiveness of PKLS-OMP to recover 
real compressible signals. We choose ECG signals as our simulation data used 
in [8]. A sparse signal approximation is determined by processing 1024 sam-
ples of ECG data with the four level discrete wavelet transform (DWT) filter 
type Symlets 8 and selecting the largest  coefficients. The Least 
Support Parameter is set to L=60. Figure 3 (a)-(b) show an example of an 
input ECG signal and its decomposition using DWT. We use same ECG sig-
nal for all experiments below. 

 

 
(b) 

Figure 2. (a) A random sparse signal, (b) Reconstruction SNR versus mea-
surement rate for the three proposed theorems and OMP-PKS. 
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Figure 4 illustrates the effect of including prior information using Theorem 
2 and 3. Partially known support is chosen as a low-pass approximation of the 
first sub band (LL) which corresponds to the first T0=64 coefficients. The 
results demonstrate that the new method using both Theorem 2 and Theorem 
3 gives perfect results to reconstruct the original signal as shown in Figure 4 
(a) and (b).  

 

 
(a) 

 
(b) 

Figure 3. (a) input ECG signal, (b) decomposition of input EGC signal. 
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(a) 

 
(b) 

Figure 4. Reconstructed signal using the termination condition of  
(a) Theorem 2,  (b) Theorem 3  
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Figure 5 shows the relation between R-SNR and RIC to choose the best 
RIC value, δ��,	for the suggested three theorems. As it can be seen the best 
value of δ��, for Theorem 2 and 3, is ����� � δ�� � �����  and for Theorem 
1, is δ�� � ����. Here, the partially known support is set to T0=16. 

The ECG reconstruction quality, using three proposed theorems, is eva-
luated as a function of the measurement rate	�����. Figure 6 shows the ef-
fect of introducing known support set (T0=32) on measurement numbers. In-
clusion of partially known support set in Theorem 2 and 3 improves the per-
formance of the Theorem 1 (LS-OMP). Note that  

PKLS-OMP using both Theorem 2 and 3 requires a fewer measurements 
than the LS-OMP and performs better R-SNR for all number of measure-
ments. 

 

 

Figure 5. Best choice for RIC value for three theorem suggested 
above , using  ECG signal with length=1024, T0=16. 
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In the next experiment, PKLS-OMP using the Theorem 2 and 3 is com-

pared with the OMP-PKS as the size of the prior known support varies. The 
reconstruction SNR is used to evaluate the quality of the recovered signals. As 
shown in Figure 7, the PKLS-OMP using Theorem 2 and 3 gives best conver-
gent results as they compared with the OMP-PKS for the measurement 
rate=0.4. 

 

 

Figure 6. Reconstruction SNR versus measurement rate for the 
three proposed theorems. 
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Changing the size of a known support set for  Theorem 2 and Theorem 3 
have no noteworthy effect on  R-SNR but the OMP-PKS needs more known 
support to improve its performance. 

Figure 8 shows the recovery time performance of the proposed PKLS-
OMP and the OMP-PKS. As it is seen, PKLS-OMP using termination condi-
tion of both Theorem 2 and 3 achieves significantly less recovery time than 
that of the OMP-PKS. Moreover, as the measurement number increases our 
algorithm keeps its speed although OMP- PKS becomes slower. 

 
 

Figure 7. Reconstruction SNR as a function of known support size.  
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As a last experiment, the PKLS-OMP is compared with the OMP and the 
CoSaMP, as well as their partially known support versions (OMP-PKS, Co-
SaMP-PKS [7]). We also include Basis Pursuit with partially known support 
(BP-PKS) [7]. In all cases, partially known support is set to T0=32. Note that 
in Figure 9, PKLS-OMP algorithm with Theorem 2 and 3 outperforms BP-
PKS, CoSaMP-PKS and yields similar reconstruction with OMP-PKS for 
small number of measurement and performs better than the  OMP-PKS when 
the number of measurements increases. Altough CoSaMP-PKS gives better 
results than CoSaMP, the algorithm needs much more measurements than the 
proposed algorithm to achieve accurate reconstructions.  

Thus, the performance of the LS-OMP is improved and the number of 
measurements is reduced for exact reconstruction through the inclusion of 
prior information with Theorem 2 and 3. In addition, as it is seen in the pre-
vious example, PKLS-OMP is also more efficient than the OMP-PKS in 
terms of recovery time. 

 
 

 

Figure 8. Recover time (in second) for the PKLS-OMP and OMP-
PKS . 
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5 Conclusions 

We introduce a new fast algorithm, named Partially Known Least Support 
Orthogonal Matching Pursuit (PKLS-OMP), for low-complexity recovery of 
sparse signals sampled by matrices satisfying the RIP with a constant parame-
ter  . 

The performance and effect of the prior information are studied through 
extensive simulations. Presented simulation results demonstrate that incorpo-
ration of partially known support improves their performance, thereby need-
ing fewer samples to reconstruct sparse signals. In addition, the recovery per-
formance of the algorithm outperforms that of the results of previously pro-
posed CS-based methods. 

As a feature work, we will extend our work to the reconstruction of sparse 
signals in the presence of noise and obtain the bound of the estimation error. 

Appendix A 

PROOF OF THEOREMS 

 

Figure 9. Comparison of PKLS-OMP and LS-OMP with OMP-PKS, Co-
SaMP-PKS, BP-PKS, OMP, and the COSAMP.  
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Theorem 1: 
If � is a sparse signal and  x � �� , � is measurement vector  y � Φx ,	Φ 

is sampling matrix satisfies RIP condition, then � can be recovered if : 
                               �y � y�ℓ�� �

δ��
���δ��

�y�ℓ����                              
Figure 10. is use for Theorem 1 proof 

 

 

 

 

       In 

Figure 10, T represents the support of whole signal that contains the 
index of a coefficient that has maximum correlation between y and	Φ. 
L represents a part of support that will be used as a least support to re-
construct the original signal. We have 

�y�ℓ�� � ‖resid�y,Φ��‖� 
� �resid�Φ���ℓx���ℓ ,Φ�ℓ�� � �resid�Φ�ℓx�ℓ ,Φ�ℓ��� 

Since  resid�Φ�ℓx�ℓ ,Φ�ℓ� � � ,  then  
�y�ℓ�� � �resid�Φ���ℓx���ℓ ,Φ�ℓ��     (a-1)  

For ℓ � �, (a-1) become 
�y�ℓ���� � �resid�Φ���ℓ��x���ℓ��,Φ�ℓ����   (a-2) 

‖resid‖� � ‖y‖ � �y��    (a-3) 
From the definition of the residue,  

resid�y,Φ�� � y � y�   (a-4) 
 	�resid�Φ���ℓ��x���ℓ��,Φ�ℓ���� � �Φ���ℓ��x���ℓ���� � �y��� (a-6) 

We have �y�� � δ|�|�|�|
��δ���	�|�|,|�|�

‖�‖ , since |I|, |J|  is the cardinality set then 

�y��� �
δ��

� � δ�
‖y‖� 

� �resid�Φ���ℓ��x���ℓ��,Φ�ℓ����
� �Φ���ℓ��x���ℓ���� �

δ��
� � δ�

�Φ���ℓ��x���ℓ���� 

 

Figure 10. Fictional diagrams for LS-OMP method 
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� �� � δ��
��δ�

��Φ���ℓ��x���ℓ����   (a-7) 

� ��������
���� �Φ���ℓ��x���ℓ����   (a-8) 

After the substitution of (a-8)   into (a-2)we get, 
�y�ℓ���� �

��������
���� �Φ���ℓ��x���ℓ����  (a-9) 

Since we work in support set L and previous iteration is reduced in set L as 
T � Tℓ�� � Tℓ, then (a-9) become;                

�y�ℓ���� �
��������
���� �Φ�ℓx�ℓ��  (a-10) 

‖y‖� � �Φ�ℓx�ℓ��    (a-11) 
After the substitution of (a-11) into (a-10)    we get 

�y�ℓ���� �
� � �� � ���

� � �� ‖y‖� 

or 
‖y‖� � ����

�������� �y�
ℓ����    (a-12) 

y� � y � y�ℓ     (a-13) 
since  

�y��� �
���
���� ‖y‖�   ( a-14) 

After the substitution of (a-13)into (a-14) yields 
�y � y�ℓ�� �

���
���� ‖y‖�    (a-15) 

And finally substitution of  (a-13)  into (a-15) yields 
�y � y�ℓ�� �

���
����� �

�����
������ �y

ℓ����  (a-16) 
Using monotonicity of the isometry constant �� � ���� 

�y � y�ℓ�� �
���

������ �y
ℓ����   (a-17) 

where 	δ�� � ���� 

Appendix B 

Theorem 2: 
If � is sparse signal and  x � �� , � is measurement vector  y � Φx ,	Φ is 

sampling matrix satisfies RIP condition, then � can be recovered if 
‖��‖� � ���

������� ‖��‖, 
for ����� � ��� � �����. 

Proof:      
Some important notation according to Figure 11 

T� : The known part of support 
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y� : The residue of y into Φ��  where y� � ������y,Φ��� x� : The coefficient vector according to y�, where y� � Φ����x� x� : Unknown part of signal  x� � x����  
y� : Measurement vector of unknown part  y� � Φ����x� 
y�,� : The projection of y� in to Φ��  i.e y�,� � �����y�, Φ���  x�,� : The projection coefficient vector according to y�,� i.e  

  y�,� � Φ��x�,�  
T� : Least-Support part 
T��: Knowing part of T� where  T�� � T� 
T�� : Set of indices estimate in T after Iteration ended 
  �� � �����,�  
  ��,� � �����,�  then 

									y� � �� � Φ�����,�       (b-18) 
According to projection definition  
                             ��,� � �Φ′���Φ����

��Φ′����Φ������� 

���,��� � ��Φ′���Φ����
��Φ′����Φ���������    

���,��� �
�

���� . δ��‖��‖�     

���,��� �
���

����� . ‖��‖�   (b-19) 
We have 

‖��‖� � �Φ��������    (b-20)  

�Φ′������� � �Φ′��������� � �Φ′���������     

 
 
 
 
 
 
 
 
 
 

 

Figure 11. Illustration of support sets for Theorem 2 and Theorem 3. 

T�� � T� 

T� 

T�� ∩ T� 

Unknown ��  Kn

T

T�-T��  

T��  

� � T� 
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� �Φ′��������� � �Φ′������Φ����������    

� �Φ′��������� � δ���������   (b-21) 
�Φ′��������� � �Φ′������Φ������x�������� � �Φ′������Φ��������������� 

�Φ′��������� � �1 � δ��� �x��������  (b-22) 
Substitution (b-22)  into (b-21) yields   

�Φ′������ � �1 � δ��� �x�������� � δ��‖��‖  (b-23) 

To find the value of �Φ′������ we have 
�Φ′������ � �Φ′��Φ�������� � �1 � δ���‖��‖�  (b-24) 

Substitution (b-24)  into (b-23) gives 
               �1 � δ���‖��‖� � �1 � δ����x�������� � δ��‖��‖   

               �1 � �δ���‖��‖� � �1 � δ��� �x�������� 

                          �x�������� �
��������
������� ‖��‖�                                  (b-25) 

Substitution  (b-25)  into (b-22) gives 
                      �Φ′��������� � �1 � δ��� ��������������� ‖��‖�  

                      ‖��‖� � �
����δ��� �Φ′���������                                    (b-26) 

We have  
                                           y� � Φ������ � Φ������    

�Φ′��������� � �Φ′�����Φ�������� � �Φ′�����Φ����������� 
Using (b-19)  we obtain                                                   

                 �Φ′��������� � δ��‖��‖� �� ���
����� . δ��. ‖��‖� 

        �Φ′��������� �
�����������

����� . ‖��‖�                                (b-27)  
Substitution (b-26)  into (b-27)  yields 

�Φ′��������� �
δ���1 � �δ���

1 � δ�� . 1
�1 � �δ��� �Φ′��������� 

thus 
                                 ‖��‖� � ���

������� . ‖��‖   (b-28) 
the cardinality length= L, finally we obtain 

                                  ‖��‖� � ���
������� . ‖��‖ 

which completes the proof of Theorem 2. 
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Appendix C 

Theorem 3 
If � is sparse signal and  x � �� , � is measurement vector y � Φx ,	Φ is 

sampling matrix  satisfies RIP condition,  then � can be recovered if : 
                 ‖�‖� � �����

����������� ‖��‖� 
for �.��� � ��� � �.���. 

Proof: 
We have 

�� � ������� 
���� � Φ�������  then 

                                     y� � �� � Φ�������                                          (c-29)  
Substitution (b-19) into (c-29) we obtain 

                            ‖y�‖� � �Φ�������� � �Φ���. ���
����� . ����  

                            ‖y�‖� � �Φ�������� �
���

����� . �Φ�������  

                           ‖y�‖� � �� � ��‖��‖� � �� � ��	 ���
����� ‖��‖�  

                                ‖y�‖� � ������
������

‖��‖�                                         (c-30) 

                                    �� � Φ����x�  
From Figure 2 we have 

                                �Φ′���������� � �Φ���∩��
� ���                         (c-31)  

                         � �Φ���∩��
� Φ���∩��x���∩���� � �Φ���∩��

� Φ������x�������  

                          � �� � δ����x���∩��� � δ���x�������                       (c-32) 
Since the set T�� � T� is out of our working set as shown in Figure 2, then its 
value will be equal zero. Since	T�� ∩ T� � T� � T� , then (c-32)becomes 

                       �Φ′���������� � �� � �����x�������                       (c-33)  

                       �Φ′������� � �Φ′���∩����� � �Φ′���������  
                          � �Φ′���∩����� � �Φ′������Φ����������  

                                  � �Φ′���∩����� � ����������                          (c-34)  
�Φ′���∩����� � �Φ���∩��

� Φ���∩��x���∩���� � �Φ���∩��
� Φ���������������     (c-35) 

Substitution (c-35) into (c-34) and removing the set that is out of working area 
we get  

                  �Φ′������ � �� � �����x���∩���� � ����������           (c-36) 
To find the value of �Φ′������ we have 
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                 �Φ������� � �Φ���Φ�������� � �� � δ���‖��‖�          (c-37) 
Substitution (c-37)into (c-36)  yields 

               �� � δ���‖��‖� � �� � δ������������� � δ��‖��‖       
                    ‖��‖� � �� � δ�������������                                         (c-38) 

                    ���������� �
�

������� ‖��‖�                                              (c-39) 
Substitution (c-39)into (c-33) yields 

                      �Φ��������� � �� � δ��� �
������� ‖��‖�		                    (c-40) 

We have  
          ‖��‖� � �

��������
‖��‖	                                                              (c-41) 

we have  
                                   y� � Φ������ � Φ������    
         �Φ���������� � �Φ������Φ�������� � �Φ������Φ������			�� 

Using  Lemma 2, we get 
                             �Φ���������� � δ��‖��‖� �	 ���

����� . δ��. ‖��‖� 

                              �Φ���������� �
�����������

����� . ‖��‖�                      (c-42) 

‖��‖� � �����
����������� �Φ����������    (c-43) 

Substitution of (c-43)  into (c-40) yields 

�Φ���������� �
� � δ��

δ���� � �δ��� �Φ���������� 

thus 
                                  ‖�‖� � �����

����������� ‖��‖�                                  (c-44) 
Setting  the cardinality length= L, we get 

‖�‖� � � � δ��
δ���� � �δ��� ‖��‖� 

which completes the proof of Theorem 3. 
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