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Abstract 
In this paper, an extension is introduced into Max-Min Improved Euler methods 
for solving initial value problems of fuzzy fractional differential equations 
(FFDEs). Two modified fractional Euler type methods have been proposed and 
investigated to obtain numerical solutions of linear and nonlinear FFDEs. The 
proposed algorithms are tested on various illustrative examples. Exact values 
are also simulated to compare and discuss the closeness and accuracy of 
approximations so obtained. Comparatively, tables and graphs results reveal the 
complete reliability, efficiency and accuracy of the proposed methods. 
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1 Introduction 

Generalization of ordinary calculus and an important branch in mathematical 
analysis, “fractional calculus” has become a subject of interest among mathe-
maticians, physicists, and engineers in last few decades [1-5]. Its extensive 
development and influence in many areas occurred after the invention of dif-
ferential calculus by Leibniz and Newton. Modeling of physical phenomenon 
in fractional differential equations (FDEs), although, a difficult task nonethe-
less has demonstrated applications in diverse fields of science. Recently, prob-
lems in many areas like diffusion process, rheology, electrochemistry, viscoe-
lasticity, etc., have been developed and formulated in terms of fractional de-
rivatives and fractional integrals, for instance, time-space fractional diffusion 
equation models, structural damping models, acoustical wave equations for 
complex media, fractional Schrodinger equation in quantum theory, etc. [6-
10].  
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Whenever a real-world problem is converted to an ordinary differential 
equation, sometimes it cannot readily or rapidly be solved by a traditional 
mathematical method and a numerical method is usually sought and carried 
out. Correspondingly to ordinary differential equations (ODEs), the exact 
analytical solutions of fractional differential equations are often difficult, and 
sometimes impossible to obtain; thus numerical–analytical methods for solv-
ing fractional differential equations are of particular importance [11-20]. 

Fractional differential equations of physical phenomenon are said to be 
modeled perfectly if every uncertainty is coped out. Therefore, it is necessary 
to have other theories along with, which would handle issues of uncertainty 
while modeling. Various theories exist for describing such situations and the 
most popular among them is fuzzy set theory [21-22]. On contribution of this 
theory more realistic models have been obtained. Over the last few years, the 
theoretical framework of fractional differential equations with fuzzy theory 
has been an on go research field. Fuzzy fractional differential equation is gen-
eralization of fuzzy differential equation, which is initially introduced by 
Agarwal et al. [23] in which he considered differential equation of fractional 
order with uncertainty and presented the concept of solution. This initiative 
motivated several researchers to establish some results on the existence and 
uniqueness of the solutions, for instance, fuzzy Laplace transform, fractional 
Euler method, iterative techniques etc. are being employed for this purpose 
[24-28]. 

In the present paper, an interpretation for fuzzy fractional differential equa-
tions has been proposed. Essentially, this work is generalization and extension 
of Method 1 and Method 2 Improved Euler Method in paper of Smita and 
Chakraverty [29] to fractional order. Before Smita and Chakraverty, many 
other authors have made considerable efforts to improve an Euler method, and 
using it as the stepping-stone of numerical methods for solving initial value 
problems in differential equations. Basically, this method was introduced by 
Euler in 1728, which was moreover improved and improved by Heun. Fur-
ther, Abraham et al. [30] proposed a new improvement on Euler method. Ma 
et al. [31] used standard Euler approximation method for linear and nonlinear 
first order fuzzy differential equation. Improved fractional Euler method for 
fuzzy fractional initial value problem is illustrated by Mazandarani et al. [32]. 
Ahmad et al. [33] proposed a new fuzzification of the classical Euler method 
for solution of linear and nonlinear fuzzy differential equations. Allahvirana-
loo [34] and Shokri [35] have employed iterative solution of improved Euler 
method for numerical solution of fuzzy differential equations. Duraisamy and 
Usha[36] used improved Euler method on fuzzy ordinary differential equa-
tions. Odibat [37] achieved his goal of numerical solution of linear and non-
linear equations of fractional order by using algorithm based on improved 
trapezoidal rule and the fractional Euler’s method. At this note, two methods 
of improved fractional Euler methods, Max-Min IFEM and Average IFEM, 
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have been illustrated. The approaches are demonstrated by applying them on 
various linear and nonlinear examples. Obtained numerical values are tabulat-
ed for different step size and fuzziness. Further, Graphical representation and 
their discussions are also presented. And lastly, conclusion is drawn from 
numerical investigation and comparisons. 

2 Importance of media independent handover IEEE 802.21 

In this section, several basic concepts of Riemann -Liouville integral and Ca-
puto fractional derivative are recalled, which are used throughout this article. 

Definition 2.1 
The Riemann-Liouville integral of order � � � for a function � is defined by 
[38] 

0,)(
)(
)()(

0

1





 


xdfxxfJ
x



 

  (1)

Lemma 2.1. Let ���� be a crisp continuous function and	��	�	- times differen-
tiable in the independent variable � over the interval of differentiation (inte-
gration) ��� ��. Then the following relation is hold [3]. 
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���	and ��	�	are just the values of � rounded up and down to the nearest inte-
ger number respectively. DRL is the more common Riemann–Liouville frac-
tional derivative operator which can be defined as follows: 
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3 Fuzzy Number 

Fuzzy number can be defined as a fuzzy set on  which is upper semi-
continuous, convex, normal and compactly supported in a metric space denot-
ed by . Also an arbitrary fuzzy number can be represented by an ordered 
pair of lower and upper bound in which lower bound is left-continuous non-
decreasing and upper bound is non-increasing functions over the interval 

. 

3.1 Trapezoidal Fuzzy Number (TrFN) 

A trapezoidal fuzzy number is defined as  4321 ,,, bbbbA   such that 

4321 bbbb   are four elements of a fuzzy set on ),( R . Its mem-
bership function )(xA  is defined as follows: 
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Though an r-cut approach trapezoidal fuzzy number can be represented as an 
ordered pair, i.e.,     434112 , brbbbrbb  , where  1,0r . 

3.2 Triangular Fuzzy Number (TFN) 

A triangular fuzzy number B is defined as ),,( 321 bbbB  such that

321 bbb  are three elements of a fuzzy set on ),( R . Its member-
ship function )(xB  is defined as follows: 
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Definition of fuzzy initial value problem can be found in [29]. 

4 Fuzzy fractional differential equations 

Consider the following nth order FFDE by 
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where       rxyrxyxy ,,,  is a fuzzy function of ,x

    ,...,, xyDxyxf x
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  are linear fuzzy-valued 
functions. 

The generalized fractional Euler’s method that has been formulated for the 
numerical solution of initial value problems with Caputo derivatives is pre-
sented by Odibat and Momani [37]. 
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With  .a,0x,x0   
In case ,1 the generalized Taylor’s formula in Eq. (8) reduces to the 

classical Taylor’s formula. With the aim to find the high accuracy for solving 
fuzzy fractional differential equations, the initial value problem is considered 
as: 
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The fuzzy fractional initial value problem (FFIVP) can be considered 
equivalently by the following initial value problems 
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Let  a,0  be the interval over which the solution of the problem is needed. 
The focus is not to acquire a function  xy  that satisfies the initial value 
problem. Alternately, an approximation has been made with the help of a set 
of points    jj xyx , . Using Taylor expansion: 
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and 



59

Khan N. A., Razzaq O. A., Riaz F.
 

 

               
 1

12
 

1
11

2

11 


















 






 

 







 h

xyDxyDhxyDhxyxy nnx
c

nnx
c

nnx
c

nnnn
 

(15)

Implies  
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A system of points that approximate the solution of  is produced by 
above recursive process and at each step the fractional Euler’s method is used 
as a prediction. 

5 Proposed methods for FFDE 

In this section, two methods to solve FFDE are proposed and illustrated. 
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5.1 Max-Min Modified Fractional Euler Method (Method 1) 

Considering all the possible combination of lower and upper values of the 
variable and by using modified fractional Euler method we obtain 
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The exact and approximate solution to Nnxn 0    ;  are denoted by 
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spectively. However, minimum and maximum are taken from Eqs. (18)-(21) 
for lower and upper values of the independent variable nx . 
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The above procedure leads to the better approximations to the exact solu-
tions. The efficiency and powerfulness of the methodology are demonstrated 
by variety of examples. 

5.2 Average Modified Fractional Euler Method (Method 2) 

In the second method, similarly averages of lower and upper values are 
computed respectively. Then the Eqs. (18)-(21) reduces to 



61

Khan N. A., Razzaq O. A., Riaz F.
 

 

    ,;;
2
1

1
)2(

1
)1(

1
rxyrxyy nnn 

  (26)

    rxyrxyy nnn ;;
2
1

1
)2(

1
)1(

1    (27)

6 Numerical problems 

Problem 1 
Let us consider a linear triangular FIVP given in [29] for fractional order. 

   xyxyDx  ,    25.1 ,1 ,75.00 y .  (28)

Then using the r-cut approach, the triangular fuzzy initial condition can be 
represented as 

   rry 125.0125.1 ,25.075.00  , 10  r .  (29)

The results of problem 1, obtained by the above Method 1 and Method 2 are 
tabulated in Table 1and 2 for different values of. 

Table 1. Comparison between Exact and proposed methods of Problem 1 for 1x , 
001.0h , 1  

 
 
 
 
 
 
 
 
 
 

r Exact values Modified Fractional Euler Methods  
Method 1 

1  
Method 2 

1  
0 [2.03871,3.05807] [2.03871,3.05807] [2.03922,3.05756] 
0.2 [2.17463,2.99011] [2.17463,2.99011] [2.17503,2.9897] 
0.4 [2.31054,2.92215] [2.31054,2.92215] [2.31084,2.92185] 
0.6 [2.44645,2.8542] [2.44645,2.8542] [2.44666,2.85399] 
0.8 [2.58237,2.78624] [2.58237,2.78624] [2.58247,2.78614] 
1 [2.71828,2.71828] [2.71828,2.71828] [2.71828,2.71828] 
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Table 2. Results obtained for Problem 1 by Method 1 and Method 2 for 1x ,
1.0h ,  75.0 and 85.0   

Problem 2 
Next consider a linear trapezoidal FIVP given in [29] for fractional order. 

       1.25 0.85,1.1, 0.75,0,  yxyxyDx
  (30)

Then using the r-cut approach, the trapezoidal fuzzy initial condition can be 
represented as 

   rry 025.0125.1 ,1.075.00  , 10  r  (31)

The results of problem 2, obtained by the above Method 1 and Method 2 are 
tabulated in Table 3 and 4 for different values of r . 

Table 3. Comparison between Exact and proposed methods of Problem 2 for 1x ,
001.0h , 1  

 
 
 
 
 
 

Modified Fractional Euler Methods 
r Method 1 

75.0  
Method 2 

75.0  
Method 1 

85.0  
Method 2 

85.0  
0 [5.35740,8.03611] [5.59647,7.79704] [3.37463,5.06194] [3.49243,4.94414] 
0.2 [5.71456,7.85753] [5.90582,7.66627] [3.59960,4.94945] [3.69384,4.85521] 
0.4 [6.07173,7.67895] [6.21516,7.53551] [3.82458,4.83696] [3.89526,4.76628] 
0.6 [6.42889,7.50037] [6.52451,7.40474] [4.04955,4.72448] [4.09667,4.67736] 
0.8 [6.78605,7.32179] [6.83386,7.27397] [4.27453,4.61199] [4.29809,4.58843] 
1 [7.14321,7.14321] [7.14321,7.14321] [4.27453,4.4995] [4.49950,4.49950] 

r Exact Values Modified Fractional Euler Methods 
Method 1 

1  
Method 2 

1  
0 [2.03871,3.05807] [2.03871,3.05807] [2.03922,3.05756] 
0.2 [2.09308,3.04448] [2.09308,3.04448] [2.09355,3.04400] 
0.4 [2.14744,3.03088] [2.14744,3.03088] [2.14788,3.03044] 
0.6 [2.20181,3.01729] [2.20181,3.01729] [2.20222,3.01688] 
0.8 [2.25617,3.0037] [2.25617,3.0037] [2.25655,3.00333] 
1 [2.31054,2.99011] [2.31054,2.99011] [2.31088,2.98977] 
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Table 4. Results obtained for Problem 2 by Method 1 and Method 2 for 1x ,
1.0h ,  75.0 and 85.0   

Problem 3 
Consider a nonlinear triangular FIVP for fractional order. 

     2xyxyxyDx 

,    25.1 ,1 ,75.00 y , 10  r  (32)

Using the r-cut approach, the triangular fuzzy initial condition can be repre-
sented as 

   rry 125.0125.1,25.075.00  , 10  r  (33)

Obtained results by Method 1 Method 2 are tabulated in Table 5 and 6 for 
different values of r . 

Table 5. Comparison between Exact and proposed methods of Problem 3for 1x ,
001.0h , 1  

 

 
 
 

Modified Fractional Euler Methods 
R Method 1 

75.0  
Method 2 

75.0  
Method 1 

85.0  
Method 2 

85.0  
0 [5.35740,8.03611] [5.59647,7.79704] [3.37463,5.06194] [3.49243,4.94414] 
0.2 [5.50027,8.00039] [5.72340,7.77726] [3.46462,5.03944] [3.57457,4.92949] 
0.4 [5.64313,7.96467] [5.85032,7.75748] [3.55461,5.01695] [3.65670,4.91485] 
0.6 [5.78600,7.92896] [5.97725,7.73771] [3.64460,4.99445] [3.73884,4.90021] 
0.8 [5.92886,7.89324] [6.10418,7.71793] [3.73459,4.97195] [3.82098,4.88556] 
1 [6.07173,7.85753] [6.23110,7.69815] [3.82458,4.94945] [3.90311,4.87092] 

r Exact Values Modified Fractional Euler Methods 
Method 1 

1  
Method 2 

1  
0 [0.524633,1.43273] [0.524633,1.43273] [0.525068,1.43229] 
0.2 [0.59539,1.32823] [0.59539,1.32823] [0.595729,1.32789] 
0.4 [0.675814,1.23403] [0.675814,1.23403] [0.676068,1.23378] 
0.6 [0.768031,1.14869] [0.768031,1.14869] [0.768205,1.14851] 
0.8 [0.874839,1.07101] [0.874839,1.07101] [0.874932,1.07091] 
1 [1.000000,1.00000] [1.000000,1.00000] [1.000000,1.00000] 
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Table 6. Results obtained for Problem 3 by Method 1 and Method 2 for 1x ,
1.0h ,  75.0 and 85.0   

Problem 4 
Now consider a nonlinear trapezoidal FIVP for fractional order. 

     2xyxyxyDx 

,    ry 25.1 ,1.10.85, ,75.00  , 10  r  (34)

Using r - cut approach, the trapezoidal fuzzy initial condition can be repre-
sented as 

   rry 025.0125.1 ,1.075.00  , 10  r  (35)

Results of this problem, obtained by Method 1 Method 2 are tabulated in Ta-
ble 7 and 8 for different values of r . 

Table 7. Comparison between Exact and proposed methods of Problem 4for 1x ,
001.0h and 1  

 
 
 
 
 
 
 

Modified Fractional Euler Methods 
R Method 1 

75.0  
Method 2 

75.0  
Method 1 

85.0  
Method 2 

85.0  
0 [0.34438,2.87449] [0.72317,2.49570] [0.40220,2.00084] [0.54076,1.65376] 
0.2 [0.36505,2.85525] [0.73933,2.48096] [0.47238,1.69349] [0.56576,1.60011] 
0.4 [0.44727,2.00193] [0.62307,1.82613] [0.55867,1.45838] [0.62081,1.39625] 
0.6 [0.56075,1.51888] [0.64884,1.43079] [0.66742,1.27305] [0.70700,1.23346] 
0.8 [0.72802,1.21165] [0.76858,1.17109] [0.80876,1.12335] [0.82935,1.10276] 
1 [1.00000,1.00000] [1.00000,1.00000] [1.00000,1.00000] [1.00000,1.00000] 

r Exact Values Modified Fractional Euler Methods 
Method 1 

1  
Method 2 

1  
0 [0.52463,1.43273] [0.52463,1.43273] [0.52507,1.43229] 
0.2 [0.55189,1.41092] [0.55189,1.41092] [0.55230,1.41051] 
0.4 [0.58052,1.38959] [0.58052,1.38959] [0.58092,1.38919] 
0.6 [0.61064,1.36870] [0.61064,1.36870] [0.61101,1.36833] 
0.8 [0.64236,1.34825] [0.64236,1.34825] [0.64271,1.34790] 
1 [0.67581,1.32823] [0.67581,1.32823] [0.67614,1.32790] 
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Table 8. Results obtained for Problem 4 by Method 1 and Method 2 for 1x ,
1.0h ,  75.0 and 85.0   

Problem 5 
Let us consider another nonlinear triangular FIVP, also studied in [29], for 
fractional order. 

   2xy
x exyD 

, 
   5.1 ,1 ,75.00 y

,
10  r  (36)

Usingthe r-cut approach, the triangular fuzzy initial condition can be repre-
sented as 

    .10,5.05.1,25.075.00  rrry (37)

Outcomes so obtained by Method 1 Method 2 are tabulated in Table 9 and 10 
for different values of r . 

Table 9. Comparison between Exact and proposed methods of Problem 5 for 1x ,
001.0h , 1  

 
 
 

 
 
 

Modified Fractional Euler Methods 
r Method 1 

75.0  
Method 2 

75.0  
Method 1 

85.0  
Method 2 

85.0  
0 [0.34438,2.87449] [0.72317,2.49570] [0.43847,1.75604] [0.54076,1.65376] 
0.2 [0.32569,4.16151] [1.07889,3.40834] [0.42864,1.93209] [0.55812,1.80261] 
0.4 [0.35124,3.74846] [0.97758,3.12212] [0.45721,1.86728] [0.57654,1.74796] 
0.6 [0.37964,3.40168] [0.90444,2.87688] [0.48819,1.80610] [0.59812,1.69617] 
0.8 [0.41143,3.10741] [0.85409,2.66475] [0.52188,1.74826] [0.62307,1.64707] 
1 [0.44727,2.85525] [0.82280,2.47971] [0.55867,1.69349] [0.65165,1.60051] 

r Exact Values Modified Fractional Euler Methods 
Method 1 

1  
Method 2 

1  
0 [1.14353,1.59134] [1.14334,1.59154] [1.14343,1.59144] 
0.2 [1.16752,1.51823] [1.16736,1.51838] [1.16744,1.51831] 
0.4 [1.19208,1.4497] [1.19196,1.44982] [1.19202,1.44976] 
0.6 [1.21727,1.38565] [1.21719,1.38573] [1.21723,1.38569] 
0.8 [1.24318,1.32584] [1.24314,1.32588] [1.24316,1.32586] 
1 [1.26987,1.26987] [1.26987,1.26987] [1.26987,1.26987] 
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Table 10. Results obtained for Problem 5 by Method 1 and Method 2 for 1x ,
1.0h ,  75.0 and 85.0   

Problem 6 
Now consider nonlinear trapezoidal FIVP for fractional order. 

  2x
x exyD     5.1 ,3.10.85, ,75.00 y 10  r  (38)

Using r - cut approach, the trapezoidal fuzzy initial condition can be repre-
sented as 

   rry 2.05.1 ,1.075.00  , 10  r  (39)

Results so obtained by Method 1 Method 2 are tabulated in Table 11 and 12 
for different values of r . 

Table 11. Comparison between Exact and proposed methods of Problem 6for 1x ,
001.0h and 1 . 

 

 
 
 
 

Modified Fractional Euler Methods 
r Method 1 

75.0  
Method 2 

75.0  
Method 1 

85.0  
Method 2 

85.0  
0 [1.31283,1.67807] [1.32335,1.66755] [1.23527,1.64905] [1.24582,1.63849] 
0.2 [1.33222,1.61581] [1.34072,1.60731] [1.25774,1.58069] [1.26631,1.57212] 
0.4 [1.35233,1.55901] [1.35874,1.55261] [1.28098,1.51748] [1.28748,1.51097] 
0.6 [1.37317,1.5073] [1.37744,1.50302] [1.30502,1.45916] [1.30939,1.45479] 
0.8 [1.39474,1.46018] [1.39688,1.45804] [1.32989,1.40536] [1.33208,1.40316] 
1 [1.41710,1.41710] [1.41710,1.41710] [1.35560,1.35560] [1.35560,1.35560] 

r Exact Values Modified Fractional Euler Methods 
Method 1 

1  
Method 2 

1  
0 [1.14353,1.59134] [1.14334,1.59154] [1.14343,1.59144] 
0.2 [1.15306,1.56155] [1.15288,1.56173] [1.15297,1.56164] 
0.4 [1.16268,1.53248] [1.16252,1.53265] [1.16260,1.53257] 
0.6 [1.17238,1.50416] [1.17223,1.50430] [1.17231,1.50423] 
0.8 [1.18218,1.47656] [1.18205,1.47670] [1.18211,1.47663] 
1 [1.19208,1.44970] [1.19196,1.44982] [1.19202,1.44976] 
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Table 12. Results obtained for Problem 6 by Method 1 and Method 2 for 1x ,
1.0h ,  75.0 and 85.0   

7 Results and discussion 

In this section, corresponding plots of problems 1-6 are given for different 
values of r . All the figures represent the comparison between exact and ap-
proximated values obtained by Method 1 and Method 2. Triangular curves in 
figures 1-2, 5-6 and 9-10 verifies the conditions of triangular fuzzy number, 
i.e. the lower and upper values converge to one value at 1r . On the other 
hand figures 3-4, 7-8, 11-12, having trapezoidal curves indicate the verifica-
tion of trapezoidal fuzzy number, i.e. the lower and upper values converge to 
two different values 1r . The overlapping of dotes and lines indicates close-
ness of the approximated and exact values which further verifies the accuracy 
of the proposed methods. 

Figures 3, 11, 19 represent triangular curves of problems 1, 3 and 5, re-
spectively, for 0.75 order of derivative i.e.  75.0 , calculated by Method 
1and Method 2. And figures 4, 12, 20 show triangular plots for 0.85 order of 
derivative i.e.  85.0 , of example 1,3 and 5, respectively, calculated by 
Method 1 and Method 2. The triangular curves indicate that the fractional 
order calculated by considered methods also satisfy conditions of triangular 
fuzzy numbers. Conversely, figures 7, 15, 23 represent trapezoidal curves for

 75.0  and figures 8, 16, 24 trapezoidal curves for  85.0 , of examples 2, 
4, and 6, respectively. Observably, fractional orders of these examples, calcu-
lated using Method 1 and Method 2, also converge to two different points, 
making a trapezoidal curve. From these figures it can be clearly resolved that 
the proposed methods are also applicable and efficient for fractional order 
derivatives. 

Modified Fractional Euler Methods 
r Method 1 

75.0  
Method 2 

75.0  
Method 1 

85.0  
Method 2 

85.0  
0 [1.31283,1.67807] [1.32335,1.66755] [1.23527,1.64905] [1.24582,1.63849] 
0.2 [1.3205,1.65249] [1.33022,1.64277] [1.24416,1.62108] [1.25394,1.61131] 
0.4 [1.32829,1.62782] [1.33719,1.61891] [1.25318,1.59395] [1.26216,1.58497] 
0.6 [1.33619,1.60402] [1.34427,1.59594] [1.26232,1.56765] [1.27049,1.55948] 
0.8 [1.3442,1.5811] [1.35145,1.57385] [1.27159,1.54216] [1.27893,1.53482] 
1 [1.35233,1.55901] [1.35874,1.55261] [1.28098,1.51748] [1.28748,1.51097] 
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8 Conclusions 

In this paper, advancement in Method 1 and Method 2 of Max-Min Improved 
Euler methods [29] for the fractional order has been made. The proposed 
methods are demonstrated through linear and nonlinear fractional differential 
equations with triangular and trapezoidal fuzzy initial values. Relatively, fol-
lowings results are concluded: 
 The proposed method converges to the exact solution more rapidly. 
 Numerical results show that for smaller step size smaller error and hence 

better and accurate results are obtained. 
 Table values and graphical plots for trapezoidal fuzzy initial values satisfy 

the definition of trapezoidal fuzzy number in section 3.1, i.e. results ob-
tained from proposed methods approach to two different solutions for the 
upper and the lower solutions of the problems. 

 Similarly, Table values and graphical plots for triangular fuzzy initial val-
ues satisfy the definition of triangular fuzzy number in section 3.2, 
i.e.results obtained from proposed method approach to one solution for the 
upper and the lower solutions of the problems.  

 It is shown that the proposed method yielded accurate approximations. 
The computations corresponding to the problems have been performed using 
Mathematica 9. Accordingly, the proposed methods are efficiently applicable 
for the fuzzy fractional differential equations of both linear and nonlinear 
problems. It can be noticed that presented methods show an easy and efficient 
way of acquiring accurate solution. 
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Appendix 

 

Figure 1. Comparison between exact and calculated values of problem 1 by Method 1 
with 1  and 001.0h  at 1x . (Exact represented by line and calculated repre-

sented by dots) 

 

Figure 2. Comparison between Exact and calculated values of problem 1 by Method 
2 with 1  and 001.0h  at 1x . (Exact represented by line and calculated repre-

sented by dots) 
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Figure 3. Comparison between Method 1and Method 2 of problem 1 with 75.0
and 1.0h  at 1x . (Black for Method 1, Red for Method 2) 

 

Figure 4. Comparison between Method 1and Method 2 of problem 1 with 85.0  
and 1.0h  at 1x . (Black for Method 1, Red for Method 2) 
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Figure 5. Comparison between exact and calculated values of problem 2 by Method 1 
with 1  and 001.0h  at 1x . (Exact represented by line and calculated repre-

sented by dots) 

 

Figure 6. Comparison between Exact and calculated values of problem 2 by Method 
2 with 1 and 001.0h at 1x . (Exact represented by line and calculated repre-

sented by dots) 

 



72

 Numerical Simulations For Solving Fuzzy ... 

 

 

Figure 7. Comparison between Method 1and Method 2 of problem 2 with 75.0
and 1.0h at 1x . (Black for Method 1, Red for Method 2) 

 

Figure 8. Comparison between Method 1and Method 2 of problem 2 with 85.0
and 1.0h at 1x . (Black for Method 1, Red for Method 2) 
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Figure 9. Comparison between Exact and calculated values of problem 3 by Method 
1 with 1 and 001.0h  at 1x . (Exact represented by line and calculated repre-

sented by dots) 

 

Figure 10. Comparison between Exact and calculated values of problem 3 by Method 
2 with 1  and 001.0h  at 1x . (Exact represented by line and calculated repre-

sented by dots) 
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Figure 11. Comparison between Method 1and Method 2 of problem 3 with 75.0
and 1.0h at 1x . (Black for Method 1, Red for Method 2) 

 

Figure 12. Comparison between Method 1and Method 2 of problem 3 with 85.0
and 1.0h at 1x . (Black for Method 1, Red for Method 2) 

 



75

Khan N. A., Razzaq O. A., Riaz F.
 

 

 

Figure 13. Comparison between Exact and calculated values of problem 4 by Method 
1 with 1 and 001.0h at 1x . (Exact represented by line and calculated repre-

sented by dots) 

 

Figure 14. Comparison between Exact and calculated values of problem 4 by Method 
2 with 1 and 001.0h at 1x . (Exact represented by line and calculated repre-

sented by dots) 

 



76

 Numerical Simulations For Solving Fuzzy ... 

 

 

Figure 15. Comparison between Method 1and Method 2 of problem 4 with 75.0
and 1.0h at 1x . (Black for Method 1, Red for Method 2) 

 

Figure 16. Comparison between Method 1and Method 2 of problem 4 with 85.0
and 1.0h at 1x . (Black for Method 1, Red for Method 2) 
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Figure 17. Comparison between Exact and calculated values of problem 5 by Method 
1 with 1 and 001.0h at 1x . (Exact represented by line and calculated repre-

sented by dots) 

 

Figure 18. Comparison between exact and calculated values of problem 5 by Method 
2 with 1  and 001.0h  at 1x . (Exact represented by line and calculated repre-

sented by dots) 
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Figure 19. Comparison between Method 1and Method 2 of problem 5 with 75.0

and 1.0h  at 1x . (Black for Method 1, Red for Method 2) 

 

 

Figure 20. Comparison between Method 1and Method 2 of problem 5 with 85.0
and 1.0h  at 1x . (Black for Method 1, Red for Method 2) 
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Figure 21. Comparison between Exact and calculated values of problem 6 by Method 
1 with 1 and 001.0h  at 1x . (Exact represented by line and calculated repre-

sented by dots) 

 
Figure 22. Comparison between Exact and calculated values of problem 6 by Method 
2 with 1  and 001.0h  at 1x . (Exact represented by line and calculated repre-

sented by dots) 
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Figure 23. Comparison between Method 1and Method 2 of problem 6 with 75.0
and 1.0h at 1x . (Black for Method 1, red for Method 2) 

 

Figure 24. Comparison between Method 1and Method 2 of problem 6 with 85.0
and 1.0h at 1x . (Black for Method 1, red for Method 2) 
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