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Abstract 
The iterative inversion of neural networks has been used in solving problems of 
adaptive control due to its good performance of information processing. In this 
paper an iterative inversion neural network with L2 penalty term has been 
presented trained by using the classical gradient descent method. We mainly 
focus on the theoretical analysis of this proposed algorithm such as 
monotonicity of error function, boundedness of input sequences and weak 
(strong) convergence behavior. For bounded property of inputs, we rigorously 
proved that the feasible solutions of input are restricted in a measurable field. 
The weak convergence means that the gradient of error function with respect to 
input tends to zero as the iterations go to infinity while the strong convergence 
stands for the iterative sequence of input vectors convergence to a fixed optimal 
point. 
Keywords: neural networks; gradient descent; inverse iterative; monotonicity; 
regularization; convergence 

1 Introduction 

Artificial neural networks have been widely used in cognitive science, compu-
tational intelligence and intelligent information processing [1, 2]. Feedforward 
neural networks are some of the most popular networks whose learning modes 
and theoretical properties are studied in numerous reports [3-5]. Backpropaga-
tion (BP) algorithm is the most broadly applied technique to train the feed-
forward neural networks. For BP networks, there are one or more hidden lay-
ers, in which the adjacent layer are fully connected with weights. Gradient 
descent methods are often employed to find the optimal solutions by charging 
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weights in the descent direction of objective function. Generally speaking, 
there are three main drawbacks of this classical BP networks: slow conver-
gence, poor generalization and local optimal solution.To overcome these ob-
stacles, many training improvements for BP networks have been suggested 
such as adding penalty terms (regularization), adaptive adjustment of learning 
rate and introducing momentum terms [6-10]. Actually, it is a common strate-
gy to improve the generalization and prune more redundant weights through 
regularization method. 

Inverse problem is one of the most important mathematical problems 
which tells us about parameters that cannot be directly observed [11, 12]. It is 
the inverse of a forward problem which deals with the results and then com-
pute the input. Contrary to the feedforword neural networks which correspond 
to the forward problem, the inverse problem results in iterative inversion of 
neural networks. 

For BP algorithm, the output error is propagated backward through the 
network and the error is computed by the weights. Conversely, an iterative 
inversion algorithm has been proposed in [13], where the weights learning is 
replaced by inputs learning. In this approach, errors in the network output are 
described with the network inputs. In addition, this iterative inversion algo-
rithm trains by the gradient descent method. In order to solve the optimization 
problem of electromagnetic mechanism, a novel inverse network has been 
designed which effectively avoids the local minimum problem [14]. Similar to 
the Bonhoeffer-Van der Pol (BVP) model, an inverse function delayed net-
work is presented by the use of anti-delay function model. It demonstrates that 
this proposed network can quickly converge to the optimal solution of combi-
natorial optimization problems. In [18], a real-time inversion of neural net-
work has been described by combining the particle swarm method. The recon-
figurable implementation of network inversion effectively reduced the compu-
tation time to near real-time levels. 

For trained neural networks, over-fitting is a common problem which leads 
to poor generalization. To overcome this problem, a typical technique is to 
employ the regularization method, that is, introduce the penalty term [12-17]. 
We note that 2L  norm of the parameters is one of the most often used penal-
ty terms. There are many researches on 2L  regularization which demonstrate 
the it can produce smooth solution and effectively control the magnitude of 
the parameters [14, 15, 16, 18]. 

As we know, the iterative inversion of neural networks has been widely 
used in real applications. However, it is necessary to pay attention to its theo-
retical analysis. In [19], an iterative inversion algorithm of neural networks 
with momentum has been designed and its convergence results are proved in 
detail. However, the boundedness of inputs can not be guaranteed which may 
lead to a very large solution. 
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In this paper, we focus on the iterative inversion algorithm of neural net-
works with L2 penalty term. The monotonicity of error function has been 
proved which shows that the objective functions of input are decreasing along 
with the iterations. More importantly, the boundedness of the inputs are rigor-
ously proved through introducing the L2 penalty term. Furthermore, both the 
week and strong convergence results are obtained, that is, the gradient of error 
function with respect to input vector approaches zero and the iterative input 
sequence converges to a fixed optimal point as the iterations go to infinity. 

The rest of the paper is organized as follows: in Section 2, the iterative 
version algorithm with L2 penalty is presented. In Section 3, the proofs of the 
theoretical results are demonstrated in detail. Finally, we conclude the paper 
with some useful remarks in Section 4. 

2 Inverse iterative algorithms with L2 penalty  

Let us begin with an introduction of an inverse iterative algorithms for neural 
network with three layers. The numbers of neurons for the input, hidden and 
output layers are n,p  and 1, respectively, suppose that the input sample and 
the corresponding ideal output sample are px R and OR . 

Let  ij n p
v


V be the weight matrix connecting the input and the hidden 

layers, and write  1, ,  
T p

i i ipv v v R 1, 2, ,i n  . The weight vector 
connecting the hidden and the output layers is denoted by 

1 2( , , , )T n
nw w w w R . Let :g R R be given activation functions for 

the hidden and output layers. For convenience, we introduce the following 
vector valued function 

    1 2( ), ( ), , ( ) T
nG g u g u g uu   (1) 

For any given input pRx , the output of the hidden neurons is )(VxG , 
and the final actual output is 

  ( )y g G w Vx  (2) 
The error function with 2L  regularization penalty term is 

 
     2 2

2

1
2

E O g G    x w Vx x
 

(3)
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where 
1

22

2 
p

j
j

x


x . 

The purpose of inverse iterative algorithms is for the given output   OR , 
input x  makes error function   E x  to achieve its minimal value. To sim-
plify the writing, we do the following transformation 

  
   21 ( ) ,

2
g t O g t t R  

 
(4) 

The gradient of the error function with respect to x  is given by 

  
        2

2
1

n

i i i
i

E g G w g 


     x x w Vx v x v x
 

(5) 

where    2
1 22 2 ,2 , , 2

T

px x x  x . 

Given an initial input vector 0  pRx , inverse iterative algorithms with 
2L  penalty updates the inputs iteratively by the formula 

  1k k kE   xx x x
 (6) 

       2

2
1

 [ ].
n

k k
i i i

i
g G w g 



     x w Vx v x v x   

where 0   is the learning rate. 
 For convenience, we introduce the following notations: 

  1k k k kE     xx x x x
 (7) 

 ( x )vk kG G  (8) 

 
1k k kG G    (9) 

3 Main results and proofs 

For any px R , we write 2

1
 ( )

p

j
j

x x


 ‖‖ , where ‖‖ stands for the Eu-

clidean norm in pR . Let 0 { : ( ) 0}E   xx x  be the stationary point 
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set of the error function ( )E x , where   p  R  is a bounded open set. Let 

0, s  R  be the projection of 0 onto the s th coordinate axis, that 

   0, 1 0: ( , , , , )T
s s s px R x x x    x  

 (10) 

for 1, 2, ,s p  . To analyze the convergence of the algorithm, we need the 
following assumptions: 

)1(A  The activation and function g  continuously differentiable,  'g t  
is uniformly bounded and Lipschitz continuous on R ; 

)2(A  The weight sequence  0
,k k

k




w V  is uniformly bounded; 

)3(A  The initial input vector of inverse iterative algorithms with 2L  pen-

alty 0x is uniformly bounded; 
)4(A  0,s does not contain any interior point for every 1, 2, ,s p  . 

We first present two useful lemmas for the convergence analysis. 

Lemma 1. Let )(xq be a function defined on a bounded closed interval 

],[ ba  such that  'q x  is Lipschitz continuous with Lipschitz constant 

0K . Then,  'q x  is differentiable almost everywhere in ],[ ba  and 

  ( ) ,q x K   . .[ , ]a e a b  (11) 

Moreover, there exists a constant 0C   such that 

  
2

0 0 0 0 0( ) ( ) ( )( ) ( ) , , [ , ].q x q x q x x x C x x x x a b       (12) 

Proof. Since  'q x is Lipschitz continuous on ],[ ba ,  'q x is absolutely 

continuous and the derivative  ''q x  exists almost everywhere on ],[ ba . 

Hence let x is a derivative point of  'q x  on ],[ ba , 

  

0

0

( ) ( )( ) lim

( ) ( )lim

h

h

q x h q xq x
h

q x h q x K
h





   

  
 

 

(13)

 

  ( ) ,q x K   . .[ , ]a e a b  (14) 
Using the integral Taylor expansion, we deduce that 
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12
0 0 0 0 0 00

12
0 0 0 0 0

2
0 0 0 0

0

( ) ( ) ( )( ) ( ) (1 ) ( ( ))

( ) ( )( ) ( ) (1 )

( ) ( )( ) ( )

,  , [ , ]

.

2

q x q x q x x x x x t q x t x x dt

q x q x x x x x K t dt

q x q x x x C x x
KC x x a b

        

     

    

   
 




 

(15)

 

Lemma 2. Let   mb be a bounded sequence satisfying 1lim( ) 0m mm
b b

  . 

Write 1 2liminf , limsupm mn m n n m n
b b 

   
  : There exists a subsequence  ki

b

of   mb  such that { : ( )}
ki

S a R b a k    . Then we have 

  1 2[ , ]S     (16) 
Proof. It is obvious that 1 2   and 1 2[ , ]S   . If 1 2  , then 

1 2lim mm
b  


  , simply proof 1 2[ , ]S   . Let us consider the case 

1 2  and proceed to prove that 1 2[ , ]S   . 
For any 1 2( , )a   , there exists 0  , such that   1 2, ( , )a a      . 

Noting that 1lim( ) 0m mm
b b

  , we observe that mb travels to and from be-

tween 1  and 2  with very small pace for all large enough m . Hence, 

there must be infinite number of points of the sequence   mb falling into 

( , a )a    . This implies a S  and thus 1 2( , ) S   Furthermore 

1 2[ , ] S    immediately leads to 1 2[ , ]S   . This completes the proof. 
Now, we are ready to prove the monotonicity theorem and convergence 

theorem. 
Theorem 1. (Monotonicity) Suppose the conditions      1 ,  2 ,  3A A A are 
valid, and the learning rate satisfies (29), for any given initial input vector 

0 px � , the error function holds that 

     1 , 0,1, 2, .k kE E k  x x 
 (17) 

then, there exists * 0E   such that 

  
  *lim .k

k
E E


x

 (18) 
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Proof. By assumption  1A  and Lemma 1, let 

  | ( ) |,| ( ) |,| ( ) | .g t g t g t C   
 (19) 

where ,t R C  is constant. By assumption  2A , let 

  1 2, .k
i

k C C w v‖ ‖ ‖ ‖  (20) 

1 21,2, , , ,i n C C   is constant. 
there holds 

  

1

1 2

1

2 2 2

1

1

2

( ( ) ( ))

( ( ))

max ( )

i i

i i

i

k k k

n
k k

i

n
k

i

k
i

k

in

G G

g g

g t

n g t

nCC

 







 

 

   

 

 

 





v x v x

v x

v x

x

‖ ‖ ‖ ‖

‖ ‖‖ ‖

‖ ‖‖ ‖

‖ ‖   

(21)

 

where 1 , (0,1).i i i i
k k

it      v x v x  
Using the integral Taylor expansion, we deduce that 

  

   
     

  
    

1

1

2 21
2 2

12

0

1 2 2

1

1 2 3

(1 )

[( ) ( ) ]

 .

k k

k k

k k

k k

k k k

p
k k
j j

j

E E

g G g G

g G

t g G t dt

x x





 



  













     
    

  

    

 

  





x x

w Vx w Vx

x x

w Vx w

w w Vx

 





  

(22) 

where, 
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  
  

  

      

1

1

1

1

1 2

0
1

(g g

g

( ) ( ))

( )

(1 )

k k

n
k k k

i i i
i

n
k k k

i i i
i
n

k k k k
i i i i

i

g G

g G w

g G w

g G w t g t dt

 









  

    

   

       







 

w Vx w

w Vx v x v x

w Vx v x v x

w Vx v x v x v x









 (23)

 
According to (6), (7), we can deduce that 

  
 2

1 2

1 ( )k k kf 


      x x x x
  

 

2

1

1 2 x
p

k k k
j j

j
x

 

    x
 

(24)
 

It follows from (19) and (20) that 

  

2 2
1 1

1

1 2 x
p

k k k k
j j

j
x A 

 

      x x‖ ‖
 

(25) 

where 2 2
1 1 2

1 . 
2

A C C C   

  
    12

2 0
(1 )k k kt g G t dt      w w Vx

   

  
2 2

2
k A  w‖ ‖‖ ‖   (26) 

  
2

2‖ ‖ kA    

where 2
2 2 2 1

1 , .
2

A C A A C     

Employing (21), we deduce that 

  
2

2 2
kA  x‖ ‖  (27) 

where 2 2
2 2 2  .A nC C A   

Indeed 
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    2 21
3

1

p
k k
j j

j
x x  



 
  

 

1 1

2

1

22 2 ( )

2 2 x

p p
k k k
j j j

j j

p
k k k
j j

j

x x x

x x

 

 

 



   

   

 


  

(28)

 
Let 

 1 2

1
2A A





    

(29)
 

we have that, 

    1
1 2 3

k kE E       x x
 

 

 

1

2 2

2 2

1

2
1

1 2

2

2

2

(

1

0.2 )1

2

p
k k
j j

j

p
k k
j j

k k

j

k k

k

x x A

A x x

A A







 







   

  

   

 

     





x x

x x

x
 

(30)

 
The proof of the monotonicity theorem is completed. 

Theorem 2. (Boundedness) The iterative sequence of input vectors   0
k

k
X




 

of inverse iterative algorithms with 2L  penalty is uniformly bounded. 
Proof. By assumption ( 3)A , let 

 
0

0Mx
 

(31)
 

According to (6); (7), we can deduce that 

  0
01 0E  xx x x

  
(32)

 

 
      21 0 0 0

2
1

[
n

i i i
i

g G w g 


      x x w Vx v x v x
 

(33)
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By (29), let 
1 2

1 1
2 2A A


 

 


, then we have 

 
1 0

4 0 1
1 [C 2 ]

2
M M


   x x

 
(34) 

where     0 0 0
4 sup sup sup w sup vi

t R
C g G g t


   w Vx

.
 

In the same way, we can deduce that 

 
2

1 4 1 2(C 2 )M M M   x
 (35) 

Repeating this procedure, There is constant (3 )jM j k  , such that 

 
j

jMx
 (36) 

Let.  0 1max , , , KM M M M  , then j Mx .  
Hence, 

 
, 0,1,k M k x 

 
(37)

 

The iterative sequence of input vectors 0( )E x is uniformly bounded. 

Theorem 3. (Weak convergence) Assume that conditions 
     1 ,  2 ,  3A A A  are valid, the error function defined by (3), and the 

learning rate satisfies (30), for any arbitrary initial value 0 ,p kx x� defined 
by (6), then 

 
 lim 0k

k
E


x x

 
(38) 

Proof. By the results of Theorem 2. Let 4 3
1 A A 


   , 

     21k k kE E    x x x  

  
   2 21 1k k kE      x x x

 
(39) 

  
  20

0
.

k
k

l
E 



   x x
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For ( ) 0,kE k x � , where K � , then 

 
 2 0

0
.

K
k

k
E



  x x
  

(40) 

Let K  , we can deduce that 

 
 2 0

0

1k

k
E







    x x
  

(41)
 

This immediately gives 

  
lim 0.k

k
 x‖ ‖

 (42) 
Combining (6) and (8) results in: 

 
 lim 0.k

k
E


x x

  (43) 
This completes the proof of the weak convergence. 

Theorem 4. (Strong convergence) If assumptions )4()1( AA  are valid, 
there holds the strong convergence: There exists *

0x  such that 

  
*lim .k

k
x x

 
(44)

 

Proof. According to ( 3)A , the sequence   k k x � has a subsequence 

that is convergent to, say, *x . Then *( )ik
ik x x ; ik  is a subse-

quence of k . It follows from (43) and the continuity of  Ex x  that 

  
     * lim lim 0.ik k

i m
E E E

 
  x x xx x x

 
(45)

 

This implies that *x  is a stationary point of  E x . Hence,  kx has at least 
one accumulation point and every accumulation point must be a stationary 
point of  E x . 

Next, by reduction to absurdity, we prove that  kx has precisely one ac-

cumulation point. Let us assume to the contrary that  kx has at least two 
accumulation points, without loss of generality, we assume that the first com-
ponents of x andex do not equal to each other, that is, 1 1x x  . For 
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(0,1)  , let 1 1 1(1 )x x x      . By Lemma 2, there exists a subse-

quence  1
1 1{ }ik kx x  such that 1

1 1 1, ( )ik x ix   , here fki1g is a subse-

quence of fkg. Due to the boundedness of  1ikx , there is a convergent sub-

sequence    2 1i ik k , we define 2
2 2( )ik i x x . Repeating this pro-

cedure, we end up with decreasing subsequences 
, ( ), 1,2, ,itk

 t tx x i t p    . Write 1 2{ , , , }px x x x     . Then, we see 

that 'x is an accumulation point of  { }kx for any (0,1)  . But this means 

that 0 has interior points, which contradicts with the assumption  4A . Thus, 
*x must be a unique accumulation point of kx . This completes the proof of 

the strong convergence. 

4 Conclusions 

An inverse iterative algorithm for neural networks with L2 penalty has been 
proposed in this paper. The main contributions of this paper are focused on 
the theoretical analyses. The monotonicity of the error function and bounded-
ness of inputs have been proved under mild conditions. The gradient sequence 
of the error function with respect to the inputs tends to zero as the iterations 
go to infinity, this results in the weak convergence. The strong convergence 
(the input sequence approaches a fixed point) is then obtained by an additional 
assumption. 
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