
JACSM 2016, Vol. 8, No. 2, pp. 99 -

99

SOFTWARE SYSTEMS CLUSTERING USING ESTIMATION
OF DISTRIBUTION APPROACH

Mahjoubeh Tajgardan, Habib Izadkhah, Shahriar Lotfi

Department of Computer Science, Faculty of Mathematical Science, University of
Tabriz, Tabriz, Iran

mahjoubeh_tajgardan@yahoo.com; izadkhah@tabrizu.ac.ir; shahriar_lotfi@tabrizu.ac.ir

Abstract
Software clustering is usually used for program understanding. Since the
software clustering is a NP-complete problem, a number of Genetic Algorithms
(GAs) are proposed for solving this problem. In literature, there are two well-
known GAs for software clustering, namely, Bunch and DAGC, that use the
genetic operators such as crossover and mutation to better search the solution
space and generating better solutions during genetic algorithm evolutionary
process. The major drawbacks of these operators are (1) the difficulty of
defining operators, (2) the difficulty of determining the probability rate of these
operators, and (3) do not guarantee to maintain building blocks. Estimation of
Distribution (EDA) based approaches, by removing crossover and mutation
operators and maintaining building blocks, can be used to solve the problems of
genetic algorithms. This approach creates the probabilistic models from
individuals to generate new population during evolutionary process, aiming to
achieve more success in solving the problems. The aim of this paper is to recast
EDA for software clustering problems, which can overcome the existing
genetic operators’ limitations. For achieving this aim, we propose a new
distribution probability function and a new EDA based algorithm for software
clustering. To the best knowledge of the authors, EDA has not been
investigated to solve the software clustering problem. The proposed EDA has
been compared with two well-known genetic algorithms on twelve benchmarks.
Experimental results show that the proposed approach provides more accurate
results, improves the speed of convergence and provides better stability when
compared against existing genetic algorithms such as Bunch and DAGC.

Key words: Software System, Clustering, Genetic Algorithm, Estimation of
Distribution Algorithm (EDA), Probability Model

1 Introduction

In large software systems, program comprehension is an important factor for
its development and maintenance [1]. Clustering is presented as a key activity
in reverse engineering to extract software architecture (structure) to improve

113
10.1515/jacsm-2016-0007

100

Software Systems Clustering Using ...

understanding of the program [2]. The aim of the software clustering methods
is to automatically group the similar artifacts of a software system together
into clusters and discover the software structure based on relationships be-
tween artifacts in a software system, in which the relationships between the
artifacts of different clusters are minimized, and the relationships between the
artifacts of the same cluster are maximized (maximum cohesion and minimum
coupling) [4]. In general, low coupling and high cohesion are characteristics
for well-designed software systems [3]. The first stage in the software clus-
tering is to extract a Call Dependency Graph (CDG) from the program to im-
prove the comprehensibility of complex software systems [4]. CDG is usually
used in search-based clustering algorithms for modeling the calls between
artifacts. Figure 1 shows a sample of the clustered call dependency graph of a
program. In this sample the relationship between artifacts in clusters is high
and the coupling between clusters is low (well-designed).

Figure 1. Clustered call dependency graph

Considering huge search space, the problem of finding the best clustering
for a software system is a non-deterministic polynomial complete (NP-
Complete) problem, hence, the necessity of the use of evolutionary algorithms
to achieve a proper clustering is known [4]. Some genetic algorithms are pro-
vided in the context of software clustering in which communication and in-
formation exchange between individuals is done through the selection and
recombination of the individual in a generation. This information movement
causes partial solutions to combine with each other, and then higher quality
solutions are obtained possibly. With all positive features that the standard
genetic algorithm has, the major drawback of this algorithm is that the behav-
ior of genetic algorithm depends on parameters like how to define the crosso-
ver and mutation operators and their probabilities, etc. [5]. Therefore, re-
searcher requires experiments in order to choose the suitable values for these
parameters [5]. Crossover is a process of taking the pairs of selected parents
and producing new offspring from them. The aim of mutation operator is to
avoid ‘getting stuck’ at local optimum points, maintain genetic diversity and
discover new areas of the search space. These operators are executed serially.
Crossover and mutation operators have a fixed rate of happening (i.e., the
operators are applied with a fixed probability) that varies across problems. In

101

Tajgardan M., Izadkhah H., Lotfi S.

problems that require certain crossover and mutation operators, defining these
operators is very difficult and complex, because genetic operators must be
defined in a way that can produce valid individuals. For example, in a permu-
tation-based encoding, we need operators that can be maintained as well as
the permutation property of individuals [6]. Moreover, in some problems in
which the genetic operators do not guarantee the building blocks protection,
GA shows a poor performance [5].

In order to overcome the disadvantages of the genetic algorithm, a class of
evolutionary algorithms called estimation of distribution algorithms (EDAs) is
provided that has advantages in comparison with genetic algorithm. These
advantages include [5]: (1) generating new individuals using the probability
distribution of all virtualization solutions of previous generation, instead of
using the genetic operators; (2) maintaining building blocks in successive
generations by giving more chances to partial solutions; and (3) improving the
speed of progress towards optimal solution by maintaining building blocks.

In this paper, we recast the estimation of distribution algorithm for soft-
ware systems clustering, aiming to overcome the genetic algorithm problems
and achieving the better clustering by keeping the building blocks during evo-
lutionary process. We propose a probability distribution function to generate a
new population using the features of clustering problem, which can solve the
problem using genetic operators such as crossover and mutation. The results
of our experiments showed that our estimation of distribution algorithm can
provide acceptable clustering from the perspective of a domain expert, and as
a result contribute to the understanding of software system.

The structure of the rest of this paper is as follows: Section 2 provides
some background about EDA and addresses the limitations of the existing
works. Section 3 explains the proposed algorithm for software clustering us-
ing EDA. Section 4 gives the results of applying our clustering algorithm and
some known evolutionary algorithms and discusses on results. Finally, Sec-
tion 5 concludes the paper.

2 Background and Related Works

In this section, we provide the basic information required for software systems
clustering using the estimation of distribution algorithms and some related
works in the field of software systems clustering.

2.1 Estimation of distribution algorithms

EDAs are population-based search algorithms based on probabilistic modeling
of promising solutions [5]. In EDAs the new population is generated using a
probability distribution estimated from the selected individuals of the previous

102

Software Systems Clustering Using ...

generation [5]. Figure 2 illustrates the EDA approaches in the optimization
process. The EDA follow the following steps in the optimization process:

1. Firstly, the initial individuals of size µ as initial population are generated.
The generation of these µ individuals is usually carried out by assuming
a uniform distribution on each variable. Then, each individual using fit-
ness function is evaluated.

2. Secondly, λ individuals (where λ ≤ µ) based on specified criteria are se-
lected for calculating the n–dimensional probabilistic model that better
represents the interdependencies. The aim is to calculate joint probability
distribution of selected individuals. This step is also known as the learn-
ing procedure, and it is the most crucial one, since representing appropri-
ately the dependencies between the variables is essential for a proper
evolution towards fitter individuals.

3. New population is generated according to calculated probability distribu-
tion.

4. Finally, new population is replaced into previous population.

Steps 2, 3 and 4 are repeated until a stopping condition is verified. Exam-
ples of stopping conditions are: achieving a fixed number of populations or a
fixed number of different evaluated individuals, uniformity in the generated
population, and the fact of not obtaining an individual with a better fitness
value after a certain number of generations.

2.2 Software clustering algorithms

Generally, in literature, software clustering algorithms can be generally cate-
gorized into the following groups:

1. Clustering algorithms based on concept analysis [7]: In such algorithms,
the goal is to classify procedures and variables into clusters. Clustering
algorithms of this group are merely used for extracting software architec-
ture form the respective procedural codes and are not conclusive for large
systems, as quoted by the author [7].

2. Hierarchical clustering algorithms [8-11]: In these algorithms, each entity
is initially considered in a separate cluster, and then; these clusters are
gradually combined with each other creating larger clusters. These algo-
rithms provide hierarchical structure from system architecture [8]. The
pitfall of hierarchical methods is their failure to benefit from software
engineering criteria for determining clusters or code clusters. The hierar-
chical approaches seem to be useful for program understanding and
knowledge discovery, because in general they allow the original problem
to be studied at different levels of detail by navigating up and down the
hierarchy. However, it is a difficult problem to find the appropriate

103

Tajgardan M., Izadkhah H., Lotfi S.

height at which to prune a hierarchy of clusters to obtain optimal parti-
tioning.

Figure 2. Illustration of EDA approaches in the optimization process

3. Search-based clustering algorithms: clustering problem is treated as a
search task in these algorithms. Since searching the complete state space
turns the situation into a NP-Complete problem [11], heuristic search
techniques such as genetic algorithm are deployed for finding the optimal
or near optimal answer during a reasonable time. Search operation is car-
ried out using criteria of maximal cohesion and minimal coupling of
clusters. These criteria are particularly suitable in object-based systems
for identifying sub-systems or clusters. These methods are divided into
two categories: global search (Such as Bunch [12, 13] and DAGC [6]),
local search (Such as SAHC [13] and NAHC [13]) and combining local
and global search (Such as HC+Bunch [14]) methods. The main draw-
back of local search methods is that they have the risk of getting stuck in
local maximum values, but, global search methods are able to escape
from these local maximums [12]. Search-based algorithms have been
able to achieve better results than the hierarchical techniques.

Genetic algorithms are widely and effectively used for NP-Hard optimiza-
tion problems. They can produce acceptably near-optimal answers in reasona-
ble time [6]. Genetic clustering algorithms are very subjective [15]; well-
known tools such as DAGC, Bunch use genetic algorithm for clustering soft-

104

Software Systems Clustering Using ...

ware systems. In the Bunch [8], each individual is an array that the number of
its genes is equal to the number of nodes in the call dependency graph (CDG)
and the content of each gene identifies a cluster that contains the correspond-
ing node. In the DAGC [6], each array (individuals) is a permutation of the
nodes of N integer. An individual can be decoded into a clustering by the
following process: mth cell of the individual represents the node number ‘m’
of the CDG. Its content includes number of another node of graph like ‘p’
(1≤p≤N) and if ‘p’ is equal or greater than ‘m’, then ‘m’ is placed in a new
cluster otherwise ‘m’ belongs to the same cluster as ‘p’.

Objective function used in Bunch and DAGC and our algorithm is Tur-
boMQ [11, 12]. If the internal edges of cluster and edges between two clusters
are respectively represented by i and ji, , TurboMQ value will be then
computed as follows:



















otherwiseCF k

j
ijjii

i

i

i

1
,,)(2

2
00






 (1)





k

i
iCFTurboMQ

1 (2)

3 The proposed algorithm

Search-based software clustering methods such as the Bunch and DAGC are
clearly superior to the hierarchical methods. However, they have a particular
drawback that it was explained before. We try to address it by introducing a
new algorithm in this section. This new algorithm is based on probabilistic
model and does not use genetic operators such as crossover and mutation,
instead keep the building blocks. In other words, we present a probabilistic
model to generate a new population. This section explains our proposed prob-
abilistic model (subsection 3.1) and software clustering using EDA (subsec-
tion 3.2).

3.1 Probabilistic model

To obtain the probability model, let M be an n×n square matrix (where n is
the number of software artifacts), and initially the values of all elements ex-
cept the main diagonal are 1/n. The value of M[i, j] represents the probability
that two artifacts will be placed in the same cluster on individuals in the next
generation. For example, if we have software system containing 5 artifacts,
initially, the probability will be as shown in Table (1).

105

Tajgardan M., Izadkhah H., Lotfi S.

Table 1. The initial probability matrix

 M�i, j� � �

� 											i, j � �,�, � , � (3)
Then, we find the best and worst individuals of the population in each gen-

eration and change the values of probability matrix as follows:

1. If two artifacts i and j are placed in the same cluster in the best individual
but are not placed in the same cluster in the worst individual (suppose t is
the number of iterations for the evolutionary algorithm):

 if	M�i, j� � � � �
� 														M�i, j� � M�i, j� � �

�	 (4)

2. If two artifacts i and j are placed in the same cluster in the worst individ-
ual but are not placed in the same cluster in the best individual:

 if	M�i, j� � �
� 														M�i, j� � M�i, j� � �

�		 (5)

3. If two artifacts i and j are placed in the same cluster in the best and the
worst individuals, the value of probability in the probability matrix does
not change.

After changing the probability model, the new population is produced us-
ing the new possibilities. For example, Suppose in the Table (2), (a) and (b)
are the best and the worst individuals respectively, then new probabilities
assuming t=100 are given in Table (3).

It is obvious that in this model the probability of any two artifacts is not
equal to 0 and 1. We consider this condition for maintaining the diversity of
our population and preventing premature convergence.

Table 2. The best and worst individual

F5 F4 F3 F2 F1
0.2 0.2 0.2 0.2 0 F1
0.2 0.2 0.2 0 0.2 F2
0.2 0.2 0 0.2 0.2 F3
0.2 0 0.2 0.2 0.2 F4
0 0.2 0.2 0.2 0.2 F5

F5 F4 F3 F2 F1
2 1 1 3 3 (a)
3 2 2 1 3 (b)

106

Software Systems Clustering Using ...

Table 3. The new probability matrix

3.2 Clustering using EDA

In our proposed algorithm each solution is shown as an individual. To rep-
resent individuals, we use Bunch algorithm’s chromosome representation [11,
12], but with limited number of clusters. In the Bunch, each individual is an
array that the number of its genes is equal to the number of nodes in the call
dependency graph (CDG) and the content of each gene identifies a cluster that
contains the corresponding node and its numeric value is between one to N
that N is the number of nodes in the CDG. Formally, an encoding on a string
S is defined as:
 S = s1 s2 s3 s4 … sN (6)

Where, N is the number of nodes in the CDG and si identifiers the cluster
that contains the ith node of the graph. For example, the graph in Figure 3 is
encoded as the following string S:
 S = 2 2 3 3 1 1 1

Figure 3. A sample clustering

In contrast with existing genetic based algorithm for software clustering, in
our method, we use the probability model instead of the using crossover and
mutation. In the proposed algorithm, first an initial population of individuals
is generated randomly and the individuals are evaluated using TurboMQ fit-

F5 F4 F3 F2 F1
0.2 0.2 0.2 0.25 0 F1
0.2 0.2 0.2 0 0.25 F2
0.2 0.2 0 0.2 0.2 F3
0.2 0 0.2 0.2 0.2 F4
0 0.2 0.2 0.2 0.2 F5

107

Tajgardan M., Izadkhah H., Lotfi S.

ness function. Then until the termination condition is established, individuals
are selected using the selection operator and then offspring is generated ac-
cording to calculated probability distribution. The previous population is re-
placed by the new population. Figure 4 shows two first generation of our pro-
posed algorithm. In this figure initial population indicate the number of indi-
viduals and the corresponding fitness.

Figure 4. Two first generation of our proposed algorithm

We use the top of triangle probability matrix for the generation of each in-
dividual in new population as Algorithm 1. In any iteration, the old population
is replaced by new produced population. Briefly, the EDAs process is as Al-
gorithm 2.

Algorithm 1: New population generation algorithm

‐ Until for each artifact, the cluster is not determined, the following steps are repeated:
1. Select a row from the probability matrix, randomly.
2. For each two artifacts generate a random number from [0, 1]. If the value of

the random number is smaller or equal to their probability value, two arti-
facts are placed in the same cluster.

Algorithm 2: EDA based software clustering algorithm

BEGIN
 Generate initial population of size µ, randomly.
 Evaluate each individual using TurboMQ (Eq. 2)

108

Software Systems Clustering Using ...

 While (a fixed number of generation is not achieved)
1. Select λ=2 promising and worse individuals (where λ ≤ µ);
2. Calculate the probability distribution matrix using selected individu-

als (Section 3.1);
3. Generate new population according to calculated probability distri-

bution;
4. Evaluate each new offspring using TurboMQ;
5. Replace offspring into main population;

 END

4 Experimental Results

In this section, we compare the results obtained by proposed EDA and five
well-known algorithms such as Bunch, DAGC, NAHC (Next Ascent Hill
Climbing), SAHC (Steepest Ascent Hill Climbing), HC+Bunch. For evaluat-
ing the obtained clustering, internal and external metrics are used. External
one is used to compare results of obtained clustering algorithm by the cluster-
ing provided by a domain expert. In fact, the external metrics are used for
assessing the reliability of an algorithm. Mojo [16], edgeMojo [17], Preci-
sion/Recall [11], and Fm as harmonic mean of Precision/Recall are of external
metrics. Mtunis is an academic operating system and since the clustering of
this operating system is available so we've used it to evaluate the reliability of
proposed algorithm. When the clustering produced by the expert is not availa-
ble, internal metrics can be used. Table 4 shows the comparison of the pro-
posed algorithm with some existing clustering algorithms. What is clear in
this table is that proposed algorithm is able to provide clustering similar to
clustering of an expert (When amount of Mojo, edgeMojo is lower, it repre-
sents more similarity between clustering produced algorithm with the one
produced by an expert, while the larger Fm indicates more similarity).

In Table 5, the proposed algorithm is compared with known evolutionary
algorithms on twelve benchmarks in terms of TurboMQ and the average value
in twenty runs. In all these cases, it's obvious that the proposed algorithm was
able to separate the clusters equal or better than Bunch and DAGC. The re-
sults of the EDA are equal to Bunch in seven and two cases and better than
Bunch in five and nine cases in terms of TurboMQ and average, respectively.
These results are also equal to DAGC in two cases, better than DAGC in ten
cases in terms of TurboMQ and better than DAGC in terms of average in all
cases.

109

Tajgardan M., Izadkhah H., Lotfi S.

Table 4. Comparisons of proposed algorithm with two well-known GA

Table 5. Comparisons of proposed algorithm with two well-known GA

 BUNCH DAGC EDA

Software
systems

of
clus-
ters

Tur-
boMQ

Aver-
age

of
clus-
ters

Tur-
boMQ

Aver-
age

of
clus-
ters

Tur-
boMQ

Aver-
age

compiler 4 1.506 1.506 4 1.506 1.455 4 1.506 1.506
boxer 7 3.101 3.101 7 3.101 2.910 7 3.101 3.091
mtunis 5 2.314 2.286 6 2.241 2.048 5 2.314 2.314
ispell 7 2.177 2.140 8 1.997 1.872 6 2. 190 2.180
bison 13 2.606 2.539 15 1.763 1.679 12 2.664 2.633

cia 14 2.706 2.627 19 1.833 1.691 12 2.787 2.740
ciald 8 2.851 2.834 12 2.463 2.275 8 2.851 2.849

moduliz-
er

7 2.648 2.608 9 2.112 1.915 7 2.648 2.628

nos 5 1.636 1.625 5 1.606 1.508 5 1.636 1.635
rcs 9 2.175 2.115 11 1.894 1.766 8 2.194 2.161

spdb 6 5.741 5.741 8 5.314 5.076 6 5.741 5.741
star 10 3.809 3.673 16 2.831 2.524 9 3. 832 3.766

In Table 6, the speed of convergence in proposed algorithm and Bunch is

compared. We run the algorithms ten times and considered 1000 for number
of iterations in each run. In cases that the obtained TurboMQ by our algorithm
is equal to Bunch, the advantage of our method is that the speed of conver-
gence to the solution is more and algorithm finds the solution in lower reps;
for illustration Figure 5 and Figure 6 show convergence diagram of compiler
benchmark for Bunch and EOD respectively. Obviously, EOD is converged in
lower number of iterations.

Table 6. Comparisons of proposed algorithm with Bunch in terms of the average of iterations
for the convergence to the solution

 compiler spdb boxer mtunis ciald modulizer nos
BUNCH 258 325 270 396 577 505 345

EOD 70 98 114 141 314 329 113

Fm Edge Mojo Mojo

0.57 7.47 5 Bunch

0.48 10.33 7 DAGC
0.25 11.14 9 HC+Bunch
0.53 13.14 5 NAHC
0.55 10.81 5 SAHC
0.57 7.47 5 EDA

110

Software Systems Clustering Using ...

Figure 5. Convergence diagram (compiler) for EDA

Figure 6. Convergence diagram (compiler) for Bunch

In Table 7, our algorithm is compared with Bunch and DAGC in terms of
the standard deviation of the results of 20 runs (the lower Std. Deviation indi-
cates more stability). The results of this table show that stability of proposed
algorithm is higher than Bunch and DAGC in most and all cases, respectively.
So, we can say our algorithm has higher stability. For example, stability dia-
gram of proposed algorithm for one of the benchmarks (compiler) is presented
in Figure 7.

0
0,2
0,4
0,6
0,8
1

1,2
1,4
1,6

1

Fi
tn
es
s

Generation number

562

0
0,2
0,4
0,6
0,8
1

1,2
1,4
1,6

1

Fi
tn
es
s

Generation number

Best individual

Average

41

111

Tajgardan M., Izadkhah H., Lotfi S.

Table 7. Comparisons of proposed algorithm with two well-known GA in terms of Std. Devia-
tion

 Std. Devia-
tion

Software
systems

compil-
er

box-
er

mtuni
s

ispell bison cia modulizer nos rcs spdb star ciald

EDA 0.002 0.018 0 0.009 0.024 0.034 0.038 0.002 0.028 0 0.075 0.003
BUNCH 0 0 0.028 0.023 0.047 0.053 0.039 0.015 0.030 0 0.080 0.010

DAGC 0.042 0.102 0.096 0.073 0.076 0.064 0.104 0.058 0.109 0.187 0.149 0.106

Figure 7. Stability diagram

5 Conclusion

In this paper, we have used estimation of distribution algorithm for software clus-
tering problem. A probability model was presented using features of clustering prob-
lem. Results of initial tests showed that the proposed algorithm is very promising. For
future work we are planning to do the following work:

1. In future work, we will try to test our algorithm on many software systems.
2. One of the important issues related to Bunch encoded is largeness of search

space due to presence of some repetitive answers, i.e., although some generated
encodes have apparently different representations, but in reality, they represent
the same clustering. For example, though two chromosomes S1= 2 2 4 4 1 and
S2=1 1 5 5 3 have different appearances but they are actually representative of
the same clustering. Because, in both, there are three clusters so that nodes of C1
and C2 are in same cluster, nodes of C3 and C4 are in same cluster and node node
C5, located in distinct cluster. Search space in Bunch algorithm is nn; this large
search space decelerates speed of this algorithm to find appropriate structure.
The state space of nn is the worst state for a problem and search in this space is
impossible in a rational time. Such state space would cause doubt in finding a

1,49

1,495

1,5

1,505

1,51

0 2 4 6 8 10 12 14 16 18 20

Fi
tn
es
s f
un

ct
io
n

Execution number

Result

Mean

112

Software Systems Clustering Using ...

good structure for software by Bunch. We believe that we can reduce it using
limited number of clusters. It is well known fact that the number of clusters are
much less than the number of classes in a program. Considering the number of
classes as n, if we limit the number of clusters to maximum n/3 of classes (it is
usually much less than n/3.); therefore, the state space of Bunch can be reduced

to nn)
3

(. The upper bound of this state space is O(n!). This significant reduc-

tion may have a significant effect on improvement of the quality of achieved
structure.

References

1. Zhang Q., Qiu D., Tian Q., Sun L., 2010, Object-oriented software architecture
recovery using a new hybrid clustering algorithm. Fuzzy Systems and
Knowledge Discovery (FSKD), Seventh International Conference on. Vol. 6.
IEEE, 2010.

2. Bittencourt R. A., and Dalton D. G., 2009, Comparison of graph clustering
algorithms for recovering software architecture module views. Software
Maintenance and Reengineering, CSMR'09. 13th European Conference on.
IEEE, 2009.

3. Poshyvanyk D., Marcus A., Ferenc R., Using information retrieval based
coupling measures for impact analysis. Empirical software engineering 14.1: 5-
32, 2009

4. Izadkhah H., Elgedawy I., and Isazadeh A., E-CDGM: An Evolutionary Call-
Dependency Graph Modularization Approach for Software Systems.
Cybernetics and Information Technologies 16.3: 70-90, 2016.

5. Larranaga P., and Lozano J., Estimation of distribution algorithms: A new tool
for evolutionary computation. Vol. 2. Springer Science & Business Media,
2002.

6. Parsa S., and Bushehrian O., A new encoding scheme and a framework to
investigate genetic clustering algorithms. Journal of Research and Practice in
Information Technology 37.1: 127, 2005.

7. Lindig C., and Snelting G., Assessing Modular Structure of Legacy Code based
on Mathematical Concept Analysis. Proceedings of the International Conference
on Software Engineering, 1997.

8. Lindig C., and Snelting G., Assessing Modular Structure of Legacy Code based
on Mathematical Concept Analysis. Proceedings of the International Conference
on Software Engineering, 1997.

9. Cui J. F., and Chae H. S., Applying Agglomerative Hierarchical Clustering
Algorithms to Component Identification for Legacy Systems. Information and
Software Technology, Volume 53, Issue 6, Pages 601-614, 2011.

113

Tajgardan M., Izadkhah H., Lotfi S.

10. Maqbool O., and Babri H., Hierarchical clustering for software architecture
recovery. IEEE Transactions on Software Engineering 33.11: 759-780, 2007.

11. Andritsos P., and Tzerpos V., Information-theoretic software clustering. IEEE
Transactions on Software Engineering 31.2: 150-165, 2005.

12. Mitchell Brian S., A heuristic search approach to solving the software clustering
problem. Diss. Drexel University, 2002.

13. Mitchell, Brian S., and Mancoridis S., On the automatic modularization of
software systems using the bunch tool. IEEE Transactions on Software
Engineering 32.3: 193-208, 2006.

14. Mahdavi K., Harman M., and Hierons R. M., A multiple hill climbing approach
to software module clustering. Software Maintenance, ICSM 2003. Proceedings.
International Conference on. IEEE, 2003.

15. Praditwong K., Harman M., and Yao X., Software module clustering as a multi-
objective search problem. IEEE Transactions on Software Engineering 37.2:
264-282, 2011.

16. Tzerpos V., and Holt R. C., MoJo: A distance metric for software clusterings.
Reverse Engineering, Proceedings. Sixth Working Conference on. IEEE, 1999.

17. Wen Z., and Tzerpos V., An effectiveness measure for software clustering
algorithms. Program Comprehension, Proceedings. 12th IEEE International
Workshop on. IEEE, 2004.

