
JACSM 2016, Vol. 8, No. 2, pp. 99 -    

99

 

 

SOFTWARE SYSTEMS CLUSTERING USING ESTIMATION  
OF DISTRIBUTION APPROACH  

Mahjoubeh Tajgardan, Habib Izadkhah, Shahriar Lotfi 

Department of Computer Science, Faculty of Mathematical Science, University of 
Tabriz, Tabriz, Iran 

mahjoubeh_tajgardan@yahoo.com; izadkhah@tabrizu.ac.ir; shahriar_lotfi@tabrizu.ac.ir 

Abstract 
Software clustering is usually used for program understanding. Since the 
software clustering is a NP-complete problem, a number of Genetic Algorithms 
(GAs) are proposed for solving this problem. In literature, there are two well-
known GAs for software clustering, namely, Bunch and DAGC, that use the 
genetic operators such as crossover and mutation to better search the solution 
space and generating better solutions during genetic algorithm evolutionary 
process. The major drawbacks of these operators are (1) the difficulty of 
defining operators, (2) the difficulty of determining the probability rate of these 
operators, and (3) do not guarantee to maintain building blocks. Estimation of 
Distribution (EDA) based approaches, by removing crossover and mutation 
operators and maintaining building blocks, can be used to solve the problems of 
genetic algorithms. This approach creates the probabilistic models from 
individuals to generate new population during evolutionary process, aiming to 
achieve more success in solving the problems. The aim of this paper is to recast 
EDA for software clustering problems, which can overcome the existing 
genetic operators’ limitations. For achieving this aim, we propose a new 
distribution probability function and a new EDA based algorithm for software 
clustering. To the best knowledge of the authors, EDA has not been 
investigated to solve the software clustering problem. The proposed EDA has 
been compared with two well-known genetic algorithms on twelve benchmarks. 
Experimental results show that the proposed approach provides more accurate 
results, improves the speed of convergence and provides better stability when 
compared against existing genetic algorithms such as Bunch and DAGC. 

Key words: Software System, Clustering, Genetic Algorithm, Estimation of 
Distribution Algorithm (EDA), Probability Model 

1 Introduction 

In large software systems, program comprehension is an important factor for 
its development and maintenance [1]. Clustering is presented as a key activity 
in reverse engineering to extract software architecture (structure) to improve 
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understanding of the program [2]. The aim of the software clustering methods 
is to automatically group the similar artifacts of a software system together 
into clusters and discover the software structure based on relationships be-
tween artifacts in a software system, in which the relationships between the 
artifacts of different clusters are minimized, and the relationships between the 
artifacts of the same cluster are maximized (maximum cohesion and minimum 
coupling) [4]. In general, low coupling and high cohesion are characteristics 
for well-designed software systems [3].  The first stage in the software clus-
tering is to extract a Call Dependency Graph (CDG) from the program to im-
prove the comprehensibility of complex software systems [4]. CDG is usually 
used in search-based clustering algorithms for modeling the calls between 
artifacts. Figure 1 shows a sample of the clustered call dependency graph of a 
program. In this sample the relationship between artifacts in clusters is high 
and the coupling between clusters is low (well-designed). 

 
Figure 1. Clustered call dependency graph 

Considering huge search space, the problem of finding the best clustering 
for a software system is a non-deterministic polynomial complete (NP-
Complete) problem, hence, the necessity of the use of evolutionary algorithms 
to achieve a proper clustering is known [4]. Some genetic algorithms are pro-
vided in the context of software clustering in which communication and in-
formation exchange between individuals is done through the selection and 
recombination of the individual in a generation. This information movement 
causes partial solutions to combine with each other, and then higher quality 
solutions are obtained possibly. With all positive features that the standard 
genetic algorithm has, the major drawback of this algorithm is that the behav-
ior of genetic algorithm depends on parameters like how to define the crosso-
ver and mutation operators and their probabilities, etc. [5]. Therefore, re-
searcher requires experiments in order to choose the suitable values for these 
parameters [5]. Crossover is a process of taking the pairs of selected parents 
and producing new offspring from them. The aim of mutation operator is to 
avoid ‘getting stuck’ at local optimum points, maintain genetic diversity and 
discover new areas of the search space. These operators are executed serially. 
Crossover and mutation operators have a fixed rate of happening (i.e., the 
operators are applied with a fixed probability) that varies across problems. In 
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problems that require certain crossover and mutation operators, defining these 
operators is very difficult and complex, because genetic operators must be 
defined in a way that can produce valid individuals. For example, in a permu-
tation-based encoding, we need operators that can be maintained as well as 
the permutation property of individuals [6]. Moreover, in some problems in 
which the genetic operators do not guarantee the building blocks protection, 
GA shows a poor performance [5]. 

In order to overcome the disadvantages of the genetic algorithm, a class of 
evolutionary algorithms called estimation of distribution algorithms (EDAs) is 
provided that has advantages in comparison with genetic algorithm. These 
advantages include [5]: (1) generating new individuals using the probability 
distribution of all virtualization solutions of previous generation, instead of 
using the genetic operators; (2) maintaining building blocks in successive 
generations by giving more chances to partial solutions; and (3) improving the 
speed of progress towards optimal solution by maintaining building blocks. 

In this paper, we recast the estimation of distribution algorithm for soft-
ware systems clustering, aiming to overcome the genetic algorithm problems 
and achieving the better clustering by keeping the building blocks during evo-
lutionary process. We propose a probability distribution function to generate a 
new population using the features of clustering problem, which can solve the 
problem using genetic operators such as crossover and mutation. The results 
of our experiments showed that our estimation of distribution algorithm can 
provide acceptable clustering from the perspective of a domain expert, and as 
a result contribute to the understanding of software system. 

The structure of the rest of this paper is as follows: Section 2 provides 
some background about EDA and addresses the limitations of the existing 
works. Section 3 explains the proposed algorithm for software clustering us-
ing EDA. Section 4 gives the results of applying our clustering algorithm and 
some known evolutionary algorithms and discusses on results. Finally, Sec-
tion 5 concludes the paper. 

2 Background and Related Works 

In this section, we provide the basic information required for software systems 
clustering using the estimation of distribution algorithms and some related 
works in the field of software systems clustering.  

2.1 Estimation of distribution algorithms 

EDAs are population-based search algorithms based on probabilistic modeling 
of promising solutions [5]. In EDAs the new population is generated using a 
probability distribution estimated from the selected individuals of the previous 
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generation [5]. Figure 2 illustrates the EDA approaches in the optimization 
process. The EDA follow the following steps in the optimization process: 

1. Firstly, the initial individuals of size µ as initial population are generated. 
The generation of these µ individuals is usually carried out by assuming 
a uniform distribution on each variable. Then, each individual using fit-
ness function is evaluated. 

2. Secondly, λ individuals (where λ ≤ µ) based on specified criteria are se-
lected for calculating the n–dimensional probabilistic model that better 
represents the interdependencies. The aim is to calculate joint probability 
distribution of selected individuals. This step is also known as the learn-
ing procedure, and it is the most crucial one, since representing appropri-
ately the dependencies between the variables is essential for a proper 
evolution towards fitter individuals. 

3. New population is generated according to calculated probability distribu-
tion. 

4. Finally, new population is replaced into previous population. 

Steps 2, 3 and 4 are repeated until a stopping condition is verified. Exam-
ples of stopping conditions are: achieving a fixed number of populations or a 
fixed number of different evaluated individuals, uniformity in the generated 
population, and the fact of not obtaining an individual with a better fitness 
value after a certain number of generations. 

2.2 Software clustering algorithms 

Generally, in literature, software clustering algorithms can be generally cate-
gorized into the following groups:  

1. Clustering algorithms based on concept analysis [7]:  In such algorithms, 
the goal is to classify procedures and variables into clusters. Clustering 
algorithms of this group are merely used for extracting software architec-
ture form the respective procedural codes and are not conclusive for large 
systems, as quoted by the author [7].  

2. Hierarchical clustering algorithms [8-11]: In these algorithms, each entity 
is initially considered in a separate cluster, and then; these clusters are 
gradually combined with each other creating larger clusters. These algo-
rithms provide hierarchical structure from system architecture [8]. The 
pitfall of hierarchical methods is their failure to benefit from software 
engineering criteria for determining clusters or code clusters. The hierar-
chical approaches seem to be useful for program understanding and 
knowledge discovery, because in general they allow the original problem 
to be studied at different levels of detail by navigating up and down the 
hierarchy. However, it is a difficult problem to find the appropriate 
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height at which to prune a hierarchy of clusters to obtain optimal parti-
tioning. 

 
Figure 2. Illustration of EDA approaches in the optimization process 

3. Search-based clustering algorithms: clustering problem is treated as a 
search task in these algorithms. Since searching the complete state space 
turns the situation into a NP-Complete problem [11], heuristic search 
techniques such as genetic algorithm are deployed for finding the optimal 
or near optimal answer during a reasonable time. Search operation is car-
ried out using criteria of maximal cohesion and minimal coupling of 
clusters. These criteria are particularly suitable in object-based systems 
for identifying sub-systems or clusters. These methods are divided into 
two categories: global search (Such as Bunch [12, 13] and DAGC [6]), 
local search (Such as SAHC [13] and NAHC [13]) and combining local 
and global search (Such as HC+Bunch [14]) methods. The main draw-
back of local search methods is that they have the risk of getting stuck in 
local maximum values, but, global search methods are able to escape 
from these local maximums [12]. Search-based algorithms have been 
able to achieve better results than the hierarchical techniques. 

Genetic algorithms are widely and effectively used for NP-Hard optimiza-
tion problems. They can produce acceptably near-optimal answers in reasona-
ble time [6]. Genetic clustering algorithms are very subjective [15]; well-
known tools such as DAGC, Bunch use genetic algorithm for clustering soft-
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ware systems. In the Bunch [8], each individual is an array that the number of 
its genes is equal to the number of nodes in the call dependency graph (CDG) 
and the content of each gene identifies a cluster that contains the correspond-
ing node. In the DAGC [6], each array (individuals) is a permutation of the 
nodes of N integer. An individual can be decoded into a clustering by the 
following process: mth cell of the individual represents the node number ‘m’ 
of the CDG. Its content includes number of another node of graph like ‘p’ 
(1≤p≤N) and if ‘p’ is equal or greater than ‘m’, then ‘m’ is placed in a new 
cluster otherwise ‘m’ belongs to the same cluster as ‘p’.  

Objective function used in Bunch and DAGC and our algorithm is Tur-
boMQ [11, 12]. If the internal edges of cluster and edges between two clusters 
are respectively represented by i  and ji, , TurboMQ value will be then 
computed as follows:  
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3 The proposed algorithm 

Search-based software clustering methods such as the Bunch and DAGC are 
clearly superior to the hierarchical methods. However, they have a particular 
drawback that it was explained before. We try to address it by introducing a 
new algorithm in this section. This new algorithm is based on probabilistic 
model and does not use genetic operators such as crossover and mutation, 
instead keep the building blocks. In other words, we present a probabilistic 
model to generate a new population. This section explains our proposed prob-
abilistic model (subsection 3.1) and software clustering using EDA (subsec-
tion 3.2). 

3.1 Probabilistic model 

To obtain the probability model, let M be an n×n square matrix (where n is 
the number of software artifacts), and initially the values of all elements ex-
cept the main diagonal are 1/n. The value of M[i, j] represents the probability 
that two artifacts will be placed in the same cluster on individuals in the next 
generation. For example, if we have software system containing 5 artifacts, 
initially, the probability will be as shown in Table (1). 
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Table 1. The initial probability matrix 

 
 
 
 
 
 
 
 
 
  M�i, j� � �

� 											i, j � �,�, � , � (3)  
Then, we find the best and worst individuals of the population in each gen-

eration and change the values of probability matrix as follows: 

1. If two artifacts i and j are placed in the same cluster in the best individual 
but are not placed in the same cluster in the worst individual (suppose t is 
the number of iterations for the evolutionary algorithm): 

 if	M�i, j� � � � �
� 														M�i, j� � M�i, j� � �

�	 (4) 

2. If two artifacts i and j are placed in the same cluster in the worst individ-
ual but are not placed in the same cluster in the best individual: 

 if	M�i, j� � �
� 														M�i, j� � M�i, j� � �

�		 (5) 

3. If two artifacts i and j are placed in the same cluster in the best and the 
worst individuals, the value of probability in the probability matrix does 
not change. 

After changing the probability model, the new population is produced us-
ing the new possibilities. For example, Suppose in the Table (2), (a) and (b) 
are the best and the worst individuals respectively, then new probabilities 
assuming t=100 are given in Table (3). 

It is obvious that in this model the probability of any two artifacts is not 
equal to 0 and 1. We consider this condition for maintaining the diversity of 
our population and preventing premature convergence.  

Table 2. The best and worst individual 

 
 
 
 
 

F5 F4 F3 F2 F1  
0.2 0.2 0.2 0.2 0 F1 
0.2 0.2 0.2 0 0.2 F2 
0.2 0.2 0 0.2 0.2 F3 
0.2 0 0.2 0.2 0.2 F4 
0 0.2 0.2 0.2 0.2 F5 

F5 F4 F3 F2 F1  
2 1 1 3 3 (a) 
3 2 2 1 3 (b) 
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Table 3. The new probability matrix   
 
 
 
 
 
 
 
 
 
 

3.2 Clustering using EDA 

In our proposed algorithm each solution is shown as an individual. To rep-
resent individuals, we use Bunch algorithm’s chromosome representation [11, 
12], but with limited number of clusters.  In the Bunch, each individual is an 
array that the number of its genes is equal to the number of nodes in the call 
dependency graph (CDG) and the content of each gene identifies a cluster that 
contains the corresponding node and its numeric value is between one to N 
that N is the number of nodes in the CDG. Formally, an encoding on a string 
S is defined as: 
  S = s1 s2 s3 s4 … sN (6) 

Where, N is the number of nodes in the CDG and si identifiers the cluster 
that contains the ith node of the graph. For example, the graph in Figure 3 is 
encoded as the following string S: 
  S = 2 2 3 3 1 1 1  

 
Figure 3. A sample clustering 

In contrast with existing genetic based algorithm for software clustering, in 
our method, we use the probability model instead of the using crossover and 
mutation. In the proposed algorithm, first an initial population of individuals 
is generated randomly and the individuals are evaluated using TurboMQ fit-

F5  F4  F3  F2  F1    
0.2  0.2  0.2  0.25 0  F1 
0.2  0.2  0.2  0  0.25 F2  
0.2  0.2  0  0.2  0.2  F3  
0.2  0  0.2  0.2  0.2  F4  
0  0.2  0.2  0.2  0.2  F5  
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ness function. Then until the termination condition is established, individuals 
are selected using the selection operator and then offspring is generated ac-
cording to calculated probability distribution. The previous population is re-
placed by the new population. Figure 4 shows two first generation of our pro-
posed algorithm. In this figure initial population indicate the number of indi-
viduals and the corresponding fitness.  

 
Figure 4. Two first generation of our proposed algorithm 

We use the top of triangle probability matrix for the generation of each in-
dividual in new population as Algorithm 1. In any iteration, the old population 
is replaced by new produced population. Briefly, the EDAs process is as Al-
gorithm 2. 

 

Algorithm 1: New population generation algorithm 

‐ Until for each artifact, the cluster is not determined, the following steps are repeated: 
1. Select a row from the probability matrix, randomly. 
2. For each two artifacts generate a random number from [0, 1]. If the value of 

the random number is smaller or equal to their probability value, two arti-
facts are placed in the same cluster. 

 

Algorithm 2: EDA based software clustering algorithm 

BEGIN 
     Generate initial population of size µ, randomly. 
     Evaluate each individual using TurboMQ (Eq. 2) 
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     While (a fixed number of generation is not achieved) 
1. Select λ=2 promising and worse individuals (where λ ≤ µ); 
2. Calculate the probability distribution matrix using selected individu-

als (Section 3.1); 
3. Generate new population according to calculated probability distri-

bution; 
4. Evaluate each new offspring using TurboMQ; 
5. Replace offspring into main population; 

 END

4 Experimental Results 

In this section, we compare the results obtained by proposed EDA and five 
well-known algorithms such as Bunch, DAGC, NAHC (Next Ascent Hill 
Climbing), SAHC (Steepest Ascent Hill Climbing), HC+Bunch. For evaluat-
ing the obtained clustering, internal and external metrics are used. External 
one is used to compare results of obtained clustering algorithm by the cluster-
ing provided by a domain expert. In fact, the external metrics are used for 
assessing the reliability of an algorithm. Mojo [16], edgeMojo [17], Preci-
sion/Recall [11], and Fm as harmonic mean of Precision/Recall are of external 
metrics. Mtunis is an academic operating system and since the clustering of 
this operating system is available so we've used it to evaluate the reliability of 
proposed algorithm. When the clustering produced by the expert is not availa-
ble, internal metrics can be used. Table 4 shows the comparison of the pro-
posed algorithm with some existing clustering algorithms. What is clear in 
this table is that proposed algorithm is able to provide clustering similar to 
clustering of an expert (When amount of Mojo, edgeMojo is lower, it repre-
sents more similarity between clustering produced algorithm with the one 
produced by an expert, while the larger Fm indicates more similarity). 

In Table 5, the proposed algorithm is compared with known evolutionary 
algorithms on twelve benchmarks in terms of TurboMQ and the average value 
in twenty runs. In all these cases, it's obvious that the proposed algorithm was 
able to separate the clusters equal or better than Bunch and DAGC. The re-
sults of the EDA are equal to Bunch in seven and two cases and better than 
Bunch in five and nine cases in terms of TurboMQ and average, respectively. 
These results are also equal to DAGC in two cases, better than DAGC in ten 
cases in terms of TurboMQ and better than DAGC in terms of average in all 
cases. 
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Table 4. Comparisons of proposed algorithm with two well-known GA 

 
 
 
 
 
 
 
 
 
 

Table 5. Comparisons of proposed algorithm with two well-known GA 

  BUNCH   DAGC   EDA  

Software 
systems 

# of 
clus-
ters 

Tur-
boMQ 

Aver-
age 

# of 
clus-
ters 

Tur-
boMQ 

Aver-
age 

# of 
clus-
ters 

Tur-
boMQ 

Aver-
age 

compiler 4 1.506 1.506 4 1.506 1.455 4 1.506 1.506 
boxer 7 3.101 3.101 7 3.101 2.910 7 3.101 3.091 
mtunis 5 2.314 2.286 6 2.241 2.048 5 2.314 2.314 
ispell 7 2.177 2.140 8 1.997 1.872 6 2. 190 2.180 
bison 13 2.606 2.539 15 1.763 1.679 12 2.664 2.633 

cia 14 2.706 2.627 19 1.833 1.691 12 2.787 2.740 
ciald 8 2.851 2.834 12 2.463 2.275 8 2.851 2.849 

moduliz-
er 

7 2.648 2.608 9 2.112 1.915 7 2.648 2.628 

nos 5 1.636 1.625 5 1.606 1.508 5 1.636 1.635 
rcs 9 2.175 2.115 11 1.894 1.766 8 2.194 2.161 

spdb 6 5.741 5.741 8 5.314 5.076 6 5.741 5.741 
star 10 3.809 3.673 16 2.831 2.524 9 3. 832 3.766 

 
In Table 6, the speed of convergence in proposed algorithm and Bunch is 

compared. We run the algorithms ten times and considered 1000 for number 
of iterations in each run. In cases that the obtained TurboMQ by our algorithm 
is equal to Bunch, the advantage of our method is that the speed of conver-
gence to the solution is more and algorithm finds the solution in lower reps; 
for illustration Figure 5 and Figure 6 show convergence diagram of compiler 
benchmark for Bunch and EOD respectively. Obviously, EOD is converged in 
lower number of iterations. 

Table 6. Comparisons of proposed algorithm with Bunch in terms of the average of iterations 
for the convergence to the solution 

 compiler spdb boxer mtunis ciald modulizer nos 
BUNCH 258 325 270 396 577 505 345 

EOD 70 98 114 141 314 329 113 
  
 

Fm Edge Mojo Mojo  

0.57 7.47 5 Bunch 

0.48 10.33 7 DAGC 
0.25 11.14 9 HC+Bunch 
0.53 13.14 5 NAHC 
0.55 10.81 5 SAHC 
0.57 7.47 5 EDA 
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Figure 5. Convergence diagram (compiler) for EDA  

 

Figure 6. Convergence diagram (compiler) for Bunch 

In Table 7, our algorithm is compared with Bunch and DAGC in terms of 
the standard deviation of the results of 20 runs (the lower Std. Deviation indi-
cates more stability). The results of this table show that stability of proposed 
algorithm is higher than Bunch and DAGC in most and all cases, respectively. 
So, we can say our algorithm has higher stability. For example, stability dia-
gram of proposed algorithm for one of the benchmarks (compiler) is presented 
in Figure 7.  
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Table 7. Comparisons of proposed algorithm with two well-known GA in terms of Std. Devia-
tion 

      Std. Devia-
tion 

      

Software 
systems 

compil-
er 

box-
er 

mtuni
s 

ispell bison cia modulizer nos rcs spdb star ciald 

EDA 0.002 0.018 0 0.009 0.024 0.034 0.038 0.002 0.028 0 0.075 0.003 
BUNCH 0 0 0.028 0.023 0.047 0.053 0.039 0.015 0.030 0 0.080 0.010 

DAGC 0.042 0.102 0.096 0.073 0.076 0.064 0.104 0.058 0.109 0.187 0.149 0.106 

 

 
 

Figure 7. Stability diagram 

5 Conclusion 

In this paper, we have used estimation of distribution algorithm for software clus-
tering problem. A probability model was presented using features of clustering prob-
lem. Results of initial tests showed that the proposed algorithm is very promising. For 
future work we are planning to do the following work: 

1. In future work, we will try to test our algorithm on many software systems.  
2. One of the important issues related to Bunch encoded is largeness of search 

space due to presence of some repetitive answers, i.e., although some generated 
encodes have apparently different representations, but in reality, they represent 
the same clustering. For example, though two chromosomes S1= 2 2 4 4 1 and 
S2=1 1 5 5 3 have different appearances but they are actually representative of 
the same clustering. Because, in both, there are three clusters so that nodes of C1 
and C2 are in same cluster, nodes of C3 and C4 are in same cluster and node node 
C5, located in distinct cluster. Search space in Bunch algorithm is nn; this large 
search space decelerates speed of this algorithm to find appropriate structure. 
The state space of nn is the worst state for a problem and search in this space is 
impossible in a rational time. Such state space would cause doubt in finding a 
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good structure for software by Bunch. We believe that we can reduce it using 
limited number of clusters. It is well known fact that the number of clusters are 
much less than the number of classes in a program. Considering the number of 
classes as n, if we limit the number of clusters to maximum n/3 of classes (it is 
usually much less than n/3.); therefore, the state space of Bunch can be reduced 

to nn )
3

( . The upper bound of this state space is O(n!).  This significant reduc-

tion may have a significant effect on improvement of the quality of achieved 
structure. 
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