
JACSM 2016, Vol. 8, No. 2, pp. 115 -

115

LOW-COST DYNAMIC CONSTRAINT CHECKING FOR

THE JVM

Konrad Grzanek

IT Institute, University of Social Sciences

9 Sienkiewicza St., 90-113 Lodz, Poland

kgrzanek@spoleczna.pl

Abstract

Using formal methods for software verification slowly becomes a standard in the

industry. Overall it is a good idea to integrate as many checks as possible with the

programming language. This is a major cause of the apparent success of strong

typing in software, either performed on the compile time or dynamically, on run-

time. Unfortunately, only some of the properties of software may be expressed in

the type system of event the most sophisticated programming languages. Many of

them must be performed dynamically. This paper presents a flexible library for the

dynamically typed, functional programming language running in the JVM environ-

ment. This library offers its users a close to zero run-time overhead and strong

mathematical background in category theory.

Keywords: Formal software verification, software quality, dynamic type-checking,

functional programming, category theory, Clojure

1 Introduction

Despite an apparent progress in programming languages theory and practice, the IT

industry still experiences problems achieving a desired level of software quality and

reliability. M. Thomas [2] mentions that there are from 4 up to 50 bugs (on average)

in every 1 thousand lines of production code. This is why the computers are still prob-

lematic to rely on in the (not only) safety and mission critical areas of life [1], and the

non-critical software is usually hard to use, has got a lowered level of security due to

hidden bugs that may even not exhibit themselves on a regular usage basis, but may be

exploited by the ones who search for vulnerabilities with an intention to steal informa-

tion or to introduce other kinds of costly confusion.

This paper is a result of some real-life, production-related experiences and following

considerations regarding when and how to perform constraints checks and other kinds

136
10.1515/jacsm-2016-0008

116

 Low-Cost Dynamic Constraint ...

of formal software verification in a dynamically-typed programming language for the

Java Virtual Machine (JVM) environment. We argue that it is a reasonable decision to

imply lots of these checks on the time of the program’s execution. We also provide

a library called ch that allows to define and perform some run-time constraint checks.

This article may be treated as a good introduction to how this library is implemented

and how it can (and should) be used.

1.1 Reasoning About Software Correctness

Scale of contemporary software systems together with the fact that it is intended to run

in a multi-tasking environment makes the formal verification methods a strong require-

ment not an option now. Growing popularity of tools like TLA+ (L. Lamport [5]), tem-

poral logic, and even the hand proofs in software creation process confirm the growing

need to become more and more dependent on the beauty of mathematical verification

of software systems.

It is a commonly accepted truth that type systems in programming languages are a

very strong point in the formal verification of software. Advances in type theory and

practice [3, 4] have led to development of programming languages that are particularly

effective in catching a variety of common bugs. Let us mention Haskell [9] or Ada here.

Lamport [6] says:

,,Types have become ubiquitous in computer science. [. . .] Types do more good

than harm in a programming language: they let the compiler catch errors that would

otherwise be found only after hours of debugging.”

Strong typing means that the expressions in a language contain no implicit data

conversions (coercions) that could lead to an unintentional loss of information. Static

type system is the one in which the compiler (more generally speaking - a static veri-

fication tool, the one that reads and analyzes source code) is responsible for making a

proof (or dis-proof) that a computer program does not violate any of the type-related

invariants that are amenable to pre-run analysis. On the other side, the dynamically

typed languages are these that leave at least some of the verifications of invariants for

the run-time. We should also be aware that there are type-based invariants that may

be verified neither statically, nor dynamically. For example, it is impossible to prove

the correctness of a famous quick-sort algorithm using a type checker of any kind (for

a discussion see [22]). In such cases using a formal method like the TLA+ ahead of

the implementation phase alone to prove correctness, or even providing a hand proof

is priceless. In any other scenario relying on the type system is a good idea. Typing

the specification languages is a completely different problem - for more on that subject,

please see [6].

1.2 Discussion on Static and Dynamic Type-Checking

Using a programming language with a static type checker seems a robust method of

eliminating bugs in software. When considering only the type-related aspects of a lan-

guage this statement leads to an immediate conclusion that the dynamic type checking

should be avoided at all cost. But the language is much more that that, and there are

117

Grzanek K.

of formal software verification in a dynamically-typed programming language for the

Java Virtual Machine (JVM) environment. We argue that it is a reasonable decision to

imply lots of these checks on the time of the program’s execution. We also provide

a library called ch that allows to define and perform some run-time constraint checks.

This article may be treated as a good introduction to how this library is implemented

and how it can (and should) be used.

1.1 Reasoning About Software Correctness

Scale of contemporary software systems together with the fact that it is intended to run

in a multi-tasking environment makes the formal verification methods a strong require-

ment not an option now. Growing popularity of tools like TLA+ (L. Lamport [5]), tem-

poral logic, and even the hand proofs in software creation process confirm the growing

need to become more and more dependent on the beauty of mathematical verification

of software systems.

It is a commonly accepted truth that type systems in programming languages are a

very strong point in the formal verification of software. Advances in type theory and

practice [3, 4] have led to development of programming languages that are particularly

effective in catching a variety of common bugs. Let us mention Haskell [9] or Ada here.

Lamport [6] says:

,,Types have become ubiquitous in computer science. [. . .] Types do more good

than harm in a programming language: they let the compiler catch errors that would

otherwise be found only after hours of debugging.”

Strong typing means that the expressions in a language contain no implicit data

conversions (coercions) that could lead to an unintentional loss of information. Static

type system is the one in which the compiler (more generally speaking - a static veri-

fication tool, the one that reads and analyzes source code) is responsible for making a

proof (or dis-proof) that a computer program does not violate any of the type-related

invariants that are amenable to pre-run analysis. On the other side, the dynamically

typed languages are these that leave at least some of the verifications of invariants for

the run-time. We should also be aware that there are type-based invariants that may

be verified neither statically, nor dynamically. For example, it is impossible to prove

the correctness of a famous quick-sort algorithm using a type checker of any kind (for

a discussion see [22]). In such cases using a formal method like the TLA+ ahead of

the implementation phase alone to prove correctness, or even providing a hand proof

is priceless. In any other scenario relying on the type system is a good idea. Typing

the specification languages is a completely different problem - for more on that subject,

please see [6].

1.2 Discussion on Static and Dynamic Type-Checking

Using a programming language with a static type checker seems a robust method of

eliminating bugs in software. When considering only the type-related aspects of a lan-

guage this statement leads to an immediate conclusion that the dynamic type checking

should be avoided at all cost. But the language is much more that that, and there are

multiple reasons why the dynamically typed programming languages have made such a

great success in the industry. Among the others, the dynamic languages:

– Allow to perform immediate tests of the functionality being implemented by using

REPL (Read-Eval-Print Loop).

– In the case of languages from the Lisp family, like Clojure [7, 8] it is even possible

to compile new functionality without stopping the running program. The REPL ex-

ecution takes part in the same environment in which the production software runs,

we have no debug-release cycle here, and that feature alone is a great productivity

booster.

– A lack of static type system allows to define programming constructs that are in-

tended to be run in contexts that would be very hard or even impossible to describe

using a set of static type-related constraints. Some Lisp macros are good example

here.

Even when we decide to rely on a static type checker we should be aware that

the extent to which we will be able to verify programs using this tool is limited to

what can be expressed in the rules of the type system, and this extent has bounds.

Other checks/verifications/proofs must be performed anyway either on the run-time or

by hand proving. Static type systems generally verify that the elements of a system fit

together as a structure, and only sometimes can prove or disprove their homeostasis and

well-functioning over a period of time.

1.3 Functional Programming

Another means of establishing high level of software quality and reliability is using

functional programming languages like Haskell, Clojure, Erlang. The impact of the

immutability of data structures on software correctness, its predictability and a relative

ease of searching for bugs may be at least as big as using the type checker to find the

mistakes statically. Out of the mentioned three languages two are dynamically typed

(Erlang, Clojure) and they are highly successful even in mission critical domains.

1.4 Existing Solutions for Clojure

Clojure programming language [7, 8] is one of the most interesting contemporary JVM-

targeted languages. It belongs to Lisp family, and - as its elders - is dynamically typed.

This section presents current approaches that exist in this language, and that are related

to the problems formulated above.

One attempt to employ some kind of static type checking is clojure/core.typed li-

brary [20]. This solution uses type annotations and a static type checker. Unfortu-

nately, the realization has severe performance problems as described in the discussion

[21]. Moreover, due to the reasons described in the paragraphs above a full static type

checker does not make a perfect fit with respect to the pragmatics of using Lisps and to

the overall idea of implementing software quickly.

Another similar library that suffers similar problems is prismatic/schema [19]. In

the case of this solution, we find it better in terms of the overall usability and perfor-

mance, but the type annotations a kind of get in the way with the normal ways of using

Lisp, that is - writing as much as possible using s-expressions.

118

 Low-Cost Dynamic Constraint ...

Finally, the most promising project in this domain is Cognitect’s clojure.spec [17,

18]. It may become a de-facto standard specification tool, but its goals are slightly

different than the ones we are looking at. Its development process is in its early stages,

as the adoption in the industry.

These considerations led us to the idea of creating a custom solution - Clojure library

meeting the requirements of dynamic specification/type/invariants validator, with the

following assumptions:

– being deeply rooted in functional programming [9] and using notions from the

category theory [10],

– consistency with the Lisp nature of Clojure programming language, by using s-

expressions only (Lisp as a ,,big ball of mud”),

– relying on fast dynamic type-checking routines of the JVM - the *instanceof* op-

erator,

Our solution is called kongra/ch [12, 13], shortly ch, and it has been successfully

used in kongra/prelude [14, 15] and aptell [16] projects. The following sections of the

paper are detailed description of its implementation and possible use.

2 Essentials of the ch Library

Every predicate check uses the following procedure to generate a message describing

the value, together with its type, that violates the check:

(defn chmsg

[x]

(with-out-str

(print "Illegal value ") (pr x)

(print " of type ") (pr (class x))))

When executed in the REPL the procedure works as follows:

user> (chmsg 123)

"Illegal value 123 of type java.lang.Long"

or, for nil values:

user> (chmsg nil)

"Illegal value nil of type nil"

The most essential syntactic structure in the ch library is a (ch...) form. Due to the

implementation issues the form is intended to be used both as an assertion and as a

boolean-valued function. The definition begins with a supporting function pred-call-

form:

(defn- pred-call-form

([form x]

(let [form (if (symbol? form) (vector form) form)]

(seq (conj (vec form) x))))

([form _ x]

(let [form (if (symbol? form) (vector form) form)]

(concat form (list nil x)))))

119

Grzanek K.

Finally, the most promising project in this domain is Cognitect’s clojure.spec [17,

18]. It may become a de-facto standard specification tool, but its goals are slightly

different than the ones we are looking at. Its development process is in its early stages,

as the adoption in the industry.

These considerations led us to the idea of creating a custom solution - Clojure library

meeting the requirements of dynamic specification/type/invariants validator, with the

following assumptions:

– being deeply rooted in functional programming [9] and using notions from the

category theory [10],

– consistency with the Lisp nature of Clojure programming language, by using s-

expressions only (Lisp as a ,,big ball of mud”),

– relying on fast dynamic type-checking routines of the JVM - the *instanceof* op-

erator,

Our solution is called kongra/ch [12, 13], shortly ch, and it has been successfully

used in kongra/prelude [14, 15] and aptell [16] projects. The following sections of the

paper are detailed description of its implementation and possible use.

2 Essentials of the ch Library

Every predicate check uses the following procedure to generate a message describing

the value, together with its type, that violates the check:

(defn chmsg

[x]

(with-out-str

(print "Illegal value ") (pr x)

(print " of type ") (pr (class x))))

When executed in the REPL the procedure works as follows:

user> (chmsg 123)

"Illegal value 123 of type java.lang.Long"

or, for nil values:

user> (chmsg nil)

"Illegal value nil of type nil"

The most essential syntactic structure in the ch library is a (ch...) form. Due to the

implementation issues the form is intended to be used both as an assertion and as a

boolean-valued function. The definition begins with a supporting function pred-call-

form:

(defn- pred-call-form

([form x]

(let [form (if (symbol? form) (vector form) form)]

(seq (conj (vec form) x))))

([form _ x]

(let [form (if (symbol? form) (vector form) form)]

(concat form (list nil x)))))

and the actual ch macro that uses the function to generate a target s-expression, either

an assertion or a predicate-like call:

(defmacro ch {:style/indent 1}

([pred x]

(let [x’ (gensym "x__")

form (pred-call-form pred x’)]

‘(let [˜x’ ˜x] (assert ˜form (chmsg ˜x’)) ˜x’)))

([pred #_ be-pred _ x]

(let [form (pred-call-form pred x)]

‘(boolean ˜form))))

To see, what actually happens when a compiler encounters the (ch...) form, please take

a look at the expression (ch nil? 123). This expression evaluates the function nil?

belonging to the Clojure standard library against the argument, integral (Long) value

123. The target form is

(let [x__11622 123]

(assert (nil? x__11622) (chmsg x__11622))

x__11622)

The compiler introduces an additional local variable x 11622 that holds the value of an

evaluated 123 input value (expression from compiler’s point of view) and executes the

(assert...) on it using the passed nil? function an assert’s predicate. After a successful

evaluation the evaluated value of x 11622 is returned resulting in the desired behavior.

This time it’s failure, because 123 is not a nil value:

user> (ch nil? 123)

AssertionError Assert failed: Illegal value 123 of type

java.lang.Long

(nil? x__10994) kongra.ch/eval10995

(form-init3881948826253525319.clj:17)

If we decide to use (ch...) using its predicate “nature”, like (ch nil? :as-pred 123), we

get:

(boolean (nil? 123))

and the evaluation of the form ends with false value being returned.

Now, let’s talk about the performance. All the following performance benchmarks

were taken in the commodity hardware environment: Intel i7-5500U, 16 GB of RAM,

Ubuntu 14.04 64-bit using the awesome criterium1 library for benchmarking Clojure

codes. Additionally we have: CIDER 0.14.0 (Berlin), nREPL 0.2.12, Clojure 1.8.0,

Java 1.8.0 121. At first a simple expression:

user> (quick-bench (nil? 123))

Evaluation count : 52064214 in 6 samples of 8677369 calls.

Execution time mean : 1,113992 ns

Execution time std-deviation : 0,041270 ns

Execution time lower quantile : 1,058363 ns (2,5%)

1https://github.com/hugoduncan/criterium

120

 Low-Cost Dynamic Constraint ...

Execution time upper quantile : 1,160112 ns (97,5%)

Overhead used : 10,475943 ns

and the corresponding predicate form of (ch...):

user> (quick-bench (ch nil? :as-pred 123))

Evaluation count : 52235052 in 6 samples of 8705842 calls.

Execution time mean : 1,078551 ns

Execution time std-deviation : 0,115450 ns

Execution time lower quantile : 0,942867 ns (2,5%)

Execution time upper quantile : 1,215710 ns (97,5%)

Overhead used : 10,475943 ns

Also for the assertion:

user> (quick-bench (ch nil? nil))

Evaluation count : 52466976 in 6 samples of 8744496 calls.

Execution time mean : 1,081879 ns

Execution time std-deviation : 0,135884 ns

Execution time lower quantile : 0,977794 ns (2,5%)

Execution time upper quantile : 1,262656 ns (97,5%)

Overhead used : 10,475943 ns

We can clearly see that there is no apparent overhead of the call. This is only an intro-

ductory example, so it is impossible to reason now about the target performance loss

when applying this approach to a production software. This will be discussed in further

parts of the paper.

3 Generator of Ch(eck)s

The library would be far from being useful, if the user would be forced to use raw

(ch...) forms everywhere. Instead, we introduce the (defch . . .) macro that allows the

programmer to define his own named checks. The macro code goes as follows:

(defmacro defch {:style/indent 1}

([chname form]

(let [x (gensym "x__")

form+ (append-arg form x)]

‘(defch ˜chname [˜x] ˜form+)))

([chname args form]

(assert (vector? args))

(let [args+ (insert-noparam args)

form+ (insert-noarg form)]

‘(defmacro ˜chname {:style/indent 1}

(˜args ˜form)

(˜args+ ˜form+)))))

To do its job, the macro performs some manipulations with the arguments and the shape

of the target form, which is a subsequent macro in this case. So we may say that defch

is a macro-writing macro.

121

Grzanek K.

Execution time upper quantile : 1,160112 ns (97,5%)

Overhead used : 10,475943 ns

and the corresponding predicate form of (ch...):

user> (quick-bench (ch nil? :as-pred 123))

Evaluation count : 52235052 in 6 samples of 8705842 calls.

Execution time mean : 1,078551 ns

Execution time std-deviation : 0,115450 ns

Execution time lower quantile : 0,942867 ns (2,5%)

Execution time upper quantile : 1,215710 ns (97,5%)

Overhead used : 10,475943 ns

Also for the assertion:

user> (quick-bench (ch nil? nil))

Evaluation count : 52466976 in 6 samples of 8744496 calls.

Execution time mean : 1,081879 ns

Execution time std-deviation : 0,135884 ns

Execution time lower quantile : 0,977794 ns (2,5%)

Execution time upper quantile : 1,262656 ns (97,5%)

Overhead used : 10,475943 ns

We can clearly see that there is no apparent overhead of the call. This is only an intro-

ductory example, so it is impossible to reason now about the target performance loss

when applying this approach to a production software. This will be discussed in further

parts of the paper.

3 Generator of Ch(eck)s

The library would be far from being useful, if the user would be forced to use raw

(ch...) forms everywhere. Instead, we introduce the (defch . . .) macro that allows the

programmer to define his own named checks. The macro code goes as follows:

(defmacro defch {:style/indent 1}

([chname form]

(let [x (gensym "x__")

form+ (append-arg form x)]

‘(defch ˜chname [˜x] ˜form+)))

([chname args form]

(assert (vector? args))

(let [args+ (insert-noparam args)

form+ (insert-noarg form)]

‘(defmacro ˜chname {:style/indent 1}

(˜args ˜form)

(˜args+ ˜form+)))))

To do its job, the macro performs some manipulations with the arguments and the shape

of the target form, which is a subsequent macro in this case. So we may say that defch

is a macro-writing macro.

The arguments must be enhanced do support a non-assertion (predicate) use, be-

cause - as in the case of raw ch - we tend to operate both in assertion and in predicate

mode. The arguments of the target macro are prepared using the following insert-

noparam:

(defn- insert-noparam

[params]

(vec (concat (butlast params)

(list ’_)

(when (seq params) (list (last params))))))

while the two following procedures prepare the predicate target form:

(defn- insert-noarg

[form]

(let [;; lein eastwood passes a wrapper (sequence <form>),

;; let’s strip it down:

form (if (= (first form) ‘sequence) (second form) form)

[ccseq [cconcat & cclists]] form]

(assert (= ccseq ‘seq) (str "Illegal ccseq "

ccseq " in " form))

(assert (= cconcat ‘concat) (str "Illegal cconcat "

cconcat " in " form))

(assert (>= (count cclists) 2) (str "Illegal cclists "

cclists " in " form))

(let [lsts (butlast cclists)

lst (last cclists)

noarg ‘(list ’nil)]

‘(seq (concat ˜@lsts ˜noarg ˜lst)))))

(defn- append-arg

[form x]

(let [;; lein eastwood passes a wrapper (sequence <form>),

;; let’s strip it down:

form (if (= (first form) ‘sequence) (second form) form)

[ccseq [cconcat & cclists]] form]

(assert (= ccseq ‘seq) (str "Illegal ccseq "

ccseq " in " form))

(assert (= cconcat ‘concat) (str "Illegal cconcat "

cconcat " in " form))

(assert (>= (count cclists) 2) (str "Illegal cclists "

cclists " in " form))

(let [arg ‘(list ˜x)]

‘(seq (concat ˜@cclists ˜arg)))))

Finally we may take a look at how this entirety works together.

4 Unit Type Ch(eck)

Unit type is a very useful type in many programming languages. Unit type has exactly

one value. It is so called terminal object in category of types and typed functions. In

122

 Low-Cost Dynamic Constraint ...

some programming languages (e.g. Haskell) the unit type is expressed as (), while in

others (like C/C++/Java) a void keyword is used to express something related, namely

the fact that the procedure does not return any value. The latter approach may be some-

what informally referred to as a means to express a lack of information at the output of

a procedure, and this follows the original nature of the unit type in category theory - a

type with only one object carries on no information.

In Clojure, as in Java, we traditionally use nil as a representation of unit type. The

check for nil-ness is defined as follows:

;; UNIT (NIL)

(defch chUnit [x] ‘(ch nil? ˜x))

This form introduces a macro named chUnit that my be used in the following two ways:

user> (chUnit 1)

AssertionError Assert failed: Illegal value 1 of type

java.lang.Long

(clojure.core/nil? x__11646) kongra.ch/eval11647

(form-init3881948826253525319.clj:83)

or

user> (chUnit :as-pred 1)

false

Additionally we introduce complementary ch(eck)s for non-nil values:

;; NON-UNIT (NOT-NIL)

(defn not-nil? {:inline (fn [x] ‘(if (nil? ˜x) false true))}

[x] (if (nil? x) false true))

(defch chSome [x] ‘(ch not-nil? ˜x))

Their cost is as abysmal as for nil? check, as presented in one of the previous sections.

With the following definitions of test procedures:

(defn foo [x] (chUnit x))

(defn goo [x] (chSome x))

we have:

user> (quick-bench (foo nil))

Evaluation count : 35042178 in 6 samples of 5840363 calls.

Execution time mean : 6,895234 ns

Execution time std-deviation : 0,280141 ns

Execution time lower quantile : 6,617001 ns (2,5%)

Execution time upper quantile : 7,299458 ns (97,5%)

Overhead used : 10,475943 ns

and:

user> (quick-bench (goo 123))

Evaluation count : 34250304 in 6 samples of 5708384 calls.

Execution time mean : 7,283686 ns

Execution time std-deviation : 0,130028 ns

Execution time lower quantile : 7,138009 ns (2,5%)

123

Grzanek K.

some programming languages (e.g. Haskell) the unit type is expressed as (), while in

others (like C/C++/Java) a void keyword is used to express something related, namely

the fact that the procedure does not return any value. The latter approach may be some-

what informally referred to as a means to express a lack of information at the output of

a procedure, and this follows the original nature of the unit type in category theory - a

type with only one object carries on no information.

In Clojure, as in Java, we traditionally use nil as a representation of unit type. The

check for nil-ness is defined as follows:

;; UNIT (NIL)

(defch chUnit [x] ‘(ch nil? ˜x))

This form introduces a macro named chUnit that my be used in the following two ways:

user> (chUnit 1)

AssertionError Assert failed: Illegal value 1 of type

java.lang.Long

(clojure.core/nil? x__11646) kongra.ch/eval11647

(form-init3881948826253525319.clj:83)

or

user> (chUnit :as-pred 1)

false

Additionally we introduce complementary ch(eck)s for non-nil values:

;; NON-UNIT (NOT-NIL)

(defn not-nil? {:inline (fn [x] ‘(if (nil? ˜x) false true))}

[x] (if (nil? x) false true))

(defch chSome [x] ‘(ch not-nil? ˜x))

Their cost is as abysmal as for nil? check, as presented in one of the previous sections.

With the following definitions of test procedures:

(defn foo [x] (chUnit x))

(defn goo [x] (chSome x))

we have:

user> (quick-bench (foo nil))

Evaluation count : 35042178 in 6 samples of 5840363 calls.

Execution time mean : 6,895234 ns

Execution time std-deviation : 0,280141 ns

Execution time lower quantile : 6,617001 ns (2,5%)

Execution time upper quantile : 7,299458 ns (97,5%)

Overhead used : 10,475943 ns

and:

user> (quick-bench (goo 123))

Evaluation count : 34250304 in 6 samples of 5708384 calls.

Execution time mean : 7,283686 ns

Execution time std-deviation : 0,130028 ns

Execution time lower quantile : 7,138009 ns (2,5%)

Execution time upper quantile : 7,444272 ns (97,5%)

Overhead used : 10,475943 ns

To look more deeply in what happens under the hood in these test procedures, let’s use

no.disassemble2 library to view the resulting byte-code for foo:

// Method descriptor #11 (Ljava/lang/Object;)Ljava/lang/Object;

// Stack: 8, Locals: 2

public static java.lang.Object invokeStatic(java.lang.Object

x);

0 aload_0 [x]

1 aconst_null

2 astore_0 [x]

3 astore_1 [x__16079]

4 aload_1 [x__16079]

5 aconst_null

6 invokestatic

clojure.lang.Util.identical(java.lang.Object,

java.lang.Object) : boolean [17]

9 ifeq 18

12 aconst_null

13 pop

14 goto 79

17 pop

18 new java.lang.AssertionError [19]

21 dup

22 getstatic kongra.ch$foo.const__1 : clojure.lang.Var [23]

25 invokevirtual clojure.lang.Var.getRawRoot() :

java.lang.Object [29]

28 checkcast clojure.lang.IFn [31]

31 ldc <String "Assert failed: "> [33]

33 getstatic kongra.ch$foo.const__2 : clojure.lang.Var [36]

36 invokevirtual clojure.lang.Var.getRawRoot() :

java.lang.Object [29]

39 checkcast clojure.lang.IFn [31]

42 aload_1 [x__16079]

43 invokeinterface

clojure.lang.IFn.invoke(java.lang.Object) :

java.lang.Object [39] [nargs: 2]

48 ldc <String "\n"> [41]

50 getstatic kongra.ch$foo.const__3 : clojure.lang.Var [44]

53 invokevirtual clojure.lang.Var.getRawRoot() :

java.lang.Object [29]

56 checkcast clojure.lang.IFn [31]

59 getstatic kongra.ch$foo.const__4 : java.lang.Object [48]

62 invokeinterface

clojure.lang.IFn.invoke(java.lang.Object) :

java.lang.Object [39] [nargs: 2]

2https://github.com/gtrak/no.disassemble

124

 Low-Cost Dynamic Constraint ...

67 invokeinterface

clojure.lang.IFn.invoke(java.lang.Object,

java.lang.Object, java.lang.Object, java.lang.Object) :

java.lang.Object [51] [nargs: 5]

72 invokespecial

java.lang.AssertionError(java.lang.Object) [54]

75 checkcast java.lang.Throwable [56]

78 athrow

79 aload_1 [x__16079]

80 aconst_null

81 astore_1

82 areturn

When Clojure direct linking is enabled, we have an even more optimized code like:

public static java.lang.Object invokeStatic(java.lang.Object

x);

0 aload_0 [x]

1 aconst_null

2 astore_0 [x]

3 astore_1 [x__12541]

4 aload_1 [x__12541]

5 aconst_null

6 invokestatic

clojure.lang.Util.identical(java.lang.Object,

java.lang.Object) : boolean [17]

9 ifeq 19

12 getstatic java.lang.Boolean.FALSE : java.lang.Boolean

[23]

15 goto 22

18 pop

19 getstatic java.lang.Boolean.TRUE : java.lang.Boolean

[26]

22 dup

23 ifnull 37

26 getstatic java.lang.Boolean.FALSE : java.lang.Boolean

[23]

29 if_acmpeq 38

32 aconst_null

33 pop

34 goto 92

37 pop

38 new java.lang.AssertionError [28]

41 dup

42 ldc <String "Assert failed: "> [30]

44 iconst_3

45 anewarray java.lang.Object [32]

48 dup

49 iconst_0

50 aload_1 [x__12541]

51 invokestatic

125

Grzanek K.

67 invokeinterface

clojure.lang.IFn.invoke(java.lang.Object,

java.lang.Object, java.lang.Object, java.lang.Object) :

java.lang.Object [51] [nargs: 5]

72 invokespecial

java.lang.AssertionError(java.lang.Object) [54]

75 checkcast java.lang.Throwable [56]

78 athrow

79 aload_1 [x__16079]

80 aconst_null

81 astore_1

82 areturn

When Clojure direct linking is enabled, we have an even more optimized code like:

public static java.lang.Object invokeStatic(java.lang.Object

x);

0 aload_0 [x]

1 aconst_null

2 astore_0 [x]

3 astore_1 [x__12541]

4 aload_1 [x__12541]

5 aconst_null

6 invokestatic

clojure.lang.Util.identical(java.lang.Object,

java.lang.Object) : boolean [17]

9 ifeq 19

12 getstatic java.lang.Boolean.FALSE : java.lang.Boolean

[23]

15 goto 22

18 pop

19 getstatic java.lang.Boolean.TRUE : java.lang.Boolean

[26]

22 dup

23 ifnull 37

26 getstatic java.lang.Boolean.FALSE : java.lang.Boolean

[23]

29 if_acmpeq 38

32 aconst_null

33 pop

34 goto 92

37 pop

38 new java.lang.AssertionError [28]

41 dup

42 ldc <String "Assert failed: "> [30]

44 iconst_3

45 anewarray java.lang.Object [32]

48 dup

49 iconst_0

50 aload_1 [x__12541]

51 invokestatic

kongra.ch$chmsg.invokeStatic(java.lang.Object) :

java.lang.Object [36]

54 aastore

55 dup

56 iconst_1

57 ldc <String "\n"> [38]

59 aastore

60 dup

61 iconst_2

62 iconst_1

63 anewarray java.lang.Object [32]

66 dup

67 iconst_0

68 getstatic kongra.ch$foo.const__5 : java.lang.Object [42]

71 aastore

72 invokestatic

clojure.lang.ArraySeq.create(java.lang.Object[]) :

clojure.lang.ArraySeq [48]

75 invokestatic

clojure.core$pr_str.invokeStatic(clojure.lang.ISeq) :

java.lang.Object [53]

78 aastore

79 invokestatic

clojure.lang.ArraySeq.create(java.lang.Object[]) :

clojure.lang.ArraySeq [48]

82 invokestatic

clojure.core$str.invokeStatic(java.lang.Object,

clojure.lang.ISeq) : java.lang.Object [58]

85 invokespecial

java.lang.AssertionError(java.lang.Object) [61]

88 checkcast java.lang.Throwable [63]

91 athrow

92 aload_1 [x__12541]

93 aconst_null

94 astore_1

95 areturn

The code is actually a call to the (assert . . .) form as defined in the original (ch

. . .) mechanism. With this in mind we may be certain to get a very efficient check-

instrumenting code in all the places we use the ch library, and the actual cost of every

check depends solely on the nature (and cost) of the predicates he uses. It is the respon-

sibility of the programmer to keep them as cheap as possible. From what is well known

the instanceof predicates in the JVM are particularly fast and cheap both on the CPU

and the memory side. The following section discusses a way the ch library approaches

the type-checks.

126

 Low-Cost Dynamic Constraint ...

5 Class Membership Ch(eck)s

To come up with a proper, fast, run-time type checking, we first provide the following

macro that makes the instance? call:

;; CLASS MEMBERSHIP

(defch chC [c x] ‘(ch (instance? ˜c) ˜x))

Then we are ready to define another utility macro-writing macro defchC that allows the

programmer to define his own type checks (besides the ones defined in the ch library,

see Appendix A):

(defmacro defchC

[chname c]

(let [x (gensym "x__")]

‘(defch ˜chname [˜x] ‘(chC ˜˜c ˜˜x))))

Among the others the check for java.lang.Long type is defined like: (defchC chLong

Long). Now we can turn the procedure (defn foo [x] x) into (defn foo [x] (chLong x)).

The resulting procedure has the performance profile as in the following benchmarking

result:

user> (quick-bench (foo 1))

Evaluation count : 198219084 in 6 samples of 33036514 calls.

Execution time mean : 1,033696 ns

Execution time std-deviation : 0,010647 ns

Execution time lower quantile : 1,012954 ns (2,5%)

Execution time upper quantile : 1,040669 ns (97,5%)

Overhead used : 2,032505 ns

Similarly for java.lang.String we have:

user> (quick-bench (chString ""))

Evaluation count : 88947072 in 6 samples of 14824512 calls.

Execution time mean : 4,806284 ns

Execution time std-deviation : 0,094706 ns

Execution time lower quantile : 4,724241 ns (2,5%)

Execution time upper quantile : 4,942071 ns (97,5%)

Overhead used : 2,032505 ns

These benchmarks shows two things:

– The modern JVM has perfect ways to optimize type checks up to a level that is

almost hard to notice from a point of a programmer who writes common code,

even in the performance-critical parts.

– Our approach makes no overhead when calling these mechanisms and making the

JVM actually do its job.

6 Object Type Equality Ch(eck)s

In a common programmers’ practice we often have to ensure two objects have exactly

the same type. Check chLike, as defined below, serves exactly that:

127

Grzanek K.

5 Class Membership Ch(eck)s

To come up with a proper, fast, run-time type checking, we first provide the following

macro that makes the instance? call:

;; CLASS MEMBERSHIP

(defch chC [c x] ‘(ch (instance? ˜c) ˜x))

Then we are ready to define another utility macro-writing macro defchC that allows the

programmer to define his own type checks (besides the ones defined in the ch library,

see Appendix A):

(defmacro defchC

[chname c]

(let [x (gensym "x__")]

‘(defch ˜chname [˜x] ‘(chC ˜˜c ˜˜x))))

Among the others the check for java.lang.Long type is defined like: (defchC chLong

Long). Now we can turn the procedure (defn foo [x] x) into (defn foo [x] (chLong x)).

The resulting procedure has the performance profile as in the following benchmarking

result:

user> (quick-bench (foo 1))

Evaluation count : 198219084 in 6 samples of 33036514 calls.

Execution time mean : 1,033696 ns

Execution time std-deviation : 0,010647 ns

Execution time lower quantile : 1,012954 ns (2,5%)

Execution time upper quantile : 1,040669 ns (97,5%)

Overhead used : 2,032505 ns

Similarly for java.lang.String we have:

user> (quick-bench (chString ""))

Evaluation count : 88947072 in 6 samples of 14824512 calls.

Execution time mean : 4,806284 ns

Execution time std-deviation : 0,094706 ns

Execution time lower quantile : 4,724241 ns (2,5%)

Execution time upper quantile : 4,942071 ns (97,5%)

Overhead used : 2,032505 ns

These benchmarks shows two things:

– The modern JVM has perfect ways to optimize type checks up to a level that is

almost hard to notice from a point of a programmer who writes common code,

even in the performance-critical parts.

– Our approach makes no overhead when calling these mechanisms and making the

JVM actually do its job.

6 Object Type Equality Ch(eck)s

In a common programmers’ practice we often have to ensure two objects have exactly

the same type. Check chLike, as defined below, serves exactly that:

;; OBJECT TYPE EQUALITY

(defmacro chLike* [y x] ‘(identical? (class ˜y) (class ˜x)))

(defch chLike [y x] ‘(ch (chLike* ˜y) ˜x))

Let’s take look at its performance benchmark, here for two Strings:

user> (quick-bench (chLike "aaa" "bbb"))

Evaluation count : 88657260 in 6 samples of 14776210 calls.

Execution time mean : 4,793546 ns

Execution time std-deviation : 0,079737 ns

Execution time lower quantile : 4,724969 ns (2,5%)

Execution time upper quantile : 4,927724 ns (97,5%)

Overhead used : 2,032505 ns

7 Product (Pair/Tuple) and Co-Product (Discriminated Union Type)

Ch(eck)s

To apply more compound checks that use logical operators we define the following

generator of predicate checks:

(defmacro ch*
[op chs x]

(assert (vector? chs) "Must be a chs vector in (ch| ...)")

(assert (seq chs) "(ch| ...) must contain some chs")

‘(˜op ˜@(map #(pred-call-form % nil x) chs)))

The generator is used to define checks for tuple types and for discriminated union types:

;; PRODUCT (TUPLE)

(defch ch& [chs x] ‘(ch (ch* and ˜chs) ˜x))

;; CO-PRODUCT (DISCRIMINATED UNION TYPE)

(defch ch| [chs x] ‘(ch (ch* or ˜chs) ˜x))

A special case here is a co-product of exactly two types, known as Either a b type

constructor in some languages (e.g. Haskell), and its variant - the Maybe a type con-

structor, that can be defined as typeMaybea = Either ()a. The ch library specifies

them as follows:

(defch chEither [chl chr x] ‘(ch| [˜chl ˜chr] ˜x))

(defch chMaybe [ch x] ‘(chEither chUnit ˜ch ˜x))

And an example benchmark:

user> (quick-bench (chEither chString chLong 1))

Evaluation count : 91910928 in 6 samples of 15318488 calls.

Execution time mean : 4,879827 ns

Execution time std-deviation : 0,660203 ns

Execution time lower quantile : 4,433577 ns (2,5%)

Execution time upper quantile : 5,924470 ns (97,5%)

Overhead used : 2,032505 ns

128

 Low-Cost Dynamic Constraint ...

Again, we cannot see any significant impact on the performance, other than few nanosec-

onds.

8 Registry of Ch(eck)s

Additionally the ch library provides a registry of checks, that helps the programmer to

understand, what kind of checks an object or a collection of objects fulfill. The registry

is actually a mapping from string (a name) into a check:

(def ˆ:private CHS (atom {}))

To register a new check we use the following macro:

(defmacro regch

[ch]

(assert (symbol? ch))

(let [x (gensym "x__")]

‘(regch* ˜(str ch) (fn [˜x] ˜(pred-call-form ch nil x)))))

together with its back-end:

(defn regch*
[chname ch]

(chUnit

(do

(assert (string? chname))

(assert (fn? ch))

(swap! CHS

(fn [m]

(when (m chname)

(println "WARNING: chname already in use:"

chname))

(assoc m chname ch))) nil)))

Now we may use chs function:

(defn chs

([]

(chSet (apply sorted-set (sort (keys @CHS)))))

([x]

(chSet (->> @CHS

(filter (fn [[_ pred]] (pred x)))

(map first)

(apply sorted-set))))

([x & xs]

(chSet (->> (cons x xs) (map chs) (apply

cset/intersection)))))

to reach for the information, e.g.:

user> (chs 1)

#{"chInteger" "chLong" "chNumber" "chRational"}

129

Grzanek K.

Again, we cannot see any significant impact on the performance, other than few nanosec-

onds.

8 Registry of Ch(eck)s

Additionally the ch library provides a registry of checks, that helps the programmer to

understand, what kind of checks an object or a collection of objects fulfill. The registry

is actually a mapping from string (a name) into a check:

(def ˆ:private CHS (atom {}))

To register a new check we use the following macro:

(defmacro regch

[ch]

(assert (symbol? ch))

(let [x (gensym "x__")]

‘(regch* ˜(str ch) (fn [˜x] ˜(pred-call-form ch nil x)))))

together with its back-end:

(defn regch*
[chname ch]

(chUnit

(do

(assert (string? chname))

(assert (fn? ch))

(swap! CHS

(fn [m]

(when (m chname)

(println "WARNING: chname already in use:"

chname))

(assoc m chname ch))) nil)))

Now we may use chs function:

(defn chs

([]

(chSet (apply sorted-set (sort (keys @CHS)))))

([x]

(chSet (->> @CHS

(filter (fn [[_ pred]] (pred x)))

(map first)

(apply sorted-set))))

([x & xs]

(chSet (->> (cons x xs) (map chs) (apply

cset/intersection)))))

to reach for the information, e.g.:

user> (chs 1)

#{"chInteger" "chLong" "chNumber" "chRational"}

user> (chs "a")

#{"chString"}

user> (chs [1 2 3])

#{"chAssoc" "chColl" "chCounted" "chIfn" "chIndexed"

"chJavaColl" "chJavaList" "chLookup" "chReversible"

"chSeqable" "chSequential" "chVec"}

user> (chs inc)

#{"chFn" "chIfn"}

There is also a possibility to ask for checks common for a set of objects:

user> (chs 1)

#{"chInteger" "chLong" "chNumber" "chRational"}

user> (chs 1.23)

#{"chDouble" "chFloat" "chNumber"}

user> (chs 3/4)

#{"chNumber" "chRatio" "chRational"}

user> (chs 1 1.23 3/4)

#{"chNumber"}

Using the information provided the programmer can make a decision on what checks

to use in a particular situation.

9 Example Use in Production Setting

The ch library is used extensively in production. Among the others it was used to

tag some of the elements of kongra/prelude package. With the following namespace

declaration:

(ns kongra.prelude.search

(:require [kongra.ch :refer :all]

[kongra.prelude :refer :all]))

we define tree-search routines in the kongra.prelude.search namespace. In the first

place we define a combiner function that controls the tree search process, by perform-

ing order-wise concatenation of search space elements. The concatenation operates on

sequences and returns a sequence, thus the use of chSeq in the following code:

;; COMBINERS

(deftype Comb [f]

clojure.lang.IFn

(invoke [_ nodes new-nodes]

(chSeq (f (chSeq nodes) (chSeq new-nodes)))))

For the combiner we define a chComb ch(eck) and a proper constructor (consComb):

(defchC chComb Comb)

(defn consComb [f] (Comb. (chIfn f)))

The combiners for breath-first and depth-first search strategies are defined as follows:

(def breadth-first-combiner (consComb concat))

(def lazy-breadth-first-combiner (consComb lazy-cat’))

130

 Low-Cost Dynamic Constraint ...

(def depth-first-combiner (consComb #(concat %2 %1)))

(def lazy-depth-first-combiner (consComb #(lazy-cat %2 %1)))

Using exactly the same pattern we define an abstraction for goal functions

;; GOAL

(deftype Goal [f]

clojure.lang.IFn

(invoke [_ x] (boolean (f x))))

(defchC chGoal ‘Goal)

(defn consGoal [f] (Goal. (chIfn f)))

and for adjacency generators for the tree structure:

;; ADJACENCY

(deftype Adjs [f]

clojure.lang.IFn

(invoke [_ x] (chSeq (f x))))

(defchC chAdjs Adjs)

(defn consAdjs [f] (Adjs. (chIfn f)))

Finally the general tree-search procedure uses all the checks defined earlier as presented

in the following listing:

(defn tree-search

[start goal? adjs comb]

(chGoal goal?) (chAdjs adjs) (chComb comb)

(chMaybe chSome

(loop [nodes (list start)]

(when (seq nodes)

(let [obj (first nodes)]

(if (goal? obj)

obj

(recur (comb (rest nodes) (adjs obj)))))))))

Both major search strategies have the implementations like:

(defn breadth-first-search

[start goal? adjs]

(chMaybe chSome

(tree-search start

(chGoal goal?)

(chAdjs adjs)

breadth-first-combiner)))

and:

(defn depth-first-search

[start goal? adjs]

(chMaybe chSome

(tree-search start

131

Grzanek K.

(def depth-first-combiner (consComb #(concat %2 %1)))

(def lazy-depth-first-combiner (consComb #(lazy-cat %2 %1)))

Using exactly the same pattern we define an abstraction for goal functions

;; GOAL

(deftype Goal [f]

clojure.lang.IFn

(invoke [_ x] (boolean (f x))))

(defchC chGoal ‘Goal)

(defn consGoal [f] (Goal. (chIfn f)))

and for adjacency generators for the tree structure:

;; ADJACENCY

(deftype Adjs [f]

clojure.lang.IFn

(invoke [_ x] (chSeq (f x))))

(defchC chAdjs Adjs)

(defn consAdjs [f] (Adjs. (chIfn f)))

Finally the general tree-search procedure uses all the checks defined earlier as presented

in the following listing:

(defn tree-search

[start goal? adjs comb]

(chGoal goal?) (chAdjs adjs) (chComb comb)

(chMaybe chSome

(loop [nodes (list start)]

(when (seq nodes)

(let [obj (first nodes)]

(if (goal? obj)

obj

(recur (comb (rest nodes) (adjs obj)))))))))

Both major search strategies have the implementations like:

(defn breadth-first-search

[start goal? adjs]

(chMaybe chSome

(tree-search start

(chGoal goal?)

(chAdjs adjs)

breadth-first-combiner)))

and:

(defn depth-first-search

[start goal? adjs]

(chMaybe chSome

(tree-search start

(chGoal goal?)

(chAdjs adjs)

depth-first-combiner)))

A very useful procedure breadth-first-tree-levels that returns consecutive depth levels

of a tree also uses the mechanisms.

(defn breadth-first-tree-levels

[start adjs]

(chAdjs adjs)

(chSeq (->> (list start)

(iterate #(mapcat adjs %))

(map chSeq’)

(take-while seq))))

And finally the following traversal mechanism returns a lazily evaluated sequence of all

tree nodes visited according to a breadth-first strategy:

(defn breadth-first-tree-seq

([start adjs]

(chAdjs adjs)

(chSeq (apply concat (breadth-first-tree-levels start

adjs))))

([start adjs depth]

(chAdjs adjs)

(chPosLong depth)

(chSeq (->> (breadth-first-tree-levels start adjs)

(take depth)

(apply concat)))))

10 Plans for the Future Development

Performing the dynamic (run-time) checks for various constraints, including the veri-

fication of types is not enough to ensure proper integrity of software projects. Many

factors come to mind here, including:

– Multiple versions of libraries that software projects depend upon, together with

the information on the actual use of these dependencies, circularity of dependen-

cies, and general lack of reliable sources of coherent packages (libraries) bundled

together.

– Lack of the ability to effectively model highly complex systems, like the Java 8

Language Specification, being turned on into a working compiler or at least a static

analyzer working according to the rules present in the specification. The estimated

amount of work for creating Java compiler is hundreds of man-years, while it would

be great to be able to perform activities like that in time an order of magnitude

shorter. Problems of this kind were already discussed by us in [11].

These issues and the possibility to solve them in an uniform way will be subjects of

our further research activities. We tend to make ch library a part of the solution.

132

 Low-Cost Dynamic Constraint ...

References

1. Thomas M., 2016, How Can Software Be So Hard?, Gresham College Lecture, Feb.

2016, https://www.youtube.com/watch?v=VfRVz1iqgKU

2. Thomas M., 2015, Should We Trust Computers, Gresham College Lecture, Oct.

2015, https://www.youtube.com/watch?v=8SZfjvlbpMw

3. Pierce B.C., 2002, Types and Programming Languages, 1st Edition, MIT Press,

ISBN-10: 0262162091, ISBN-13: 978-0262162098

4. Pierce B.C., 2004, Advanced Topics in Types and Programming Languages, MIT

Press, ISBN-10: 0262162288, ISBN-13: 978-0262162289

5. Lamport L., 2002, Specifying Systems, The TLA+ Language and Tools for Hardware

and Software Engineers, Addison Wesley, ISBN: 0-321-14306-X

6. Lamport L., Paulson L.L., 1999, Should Your Specification Language Be Typed?,

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, pp.

502-526

7. Emerick Ch., Carper B., Grand Ch., 2012, Clojure Programming, O’Reilly Media

Inc., ISBN: 978-1-449-39470-7

8. Fogus M., Houser Ch., 2014, The Joy of Clojure, Manning Publications; 2 edition,

ISBN-10: 1617291412, ISBN-13: 978-1617291418

9. Bird R., Wadler R., 1988, Introduction to Functional Programming. Series in Com-

puter Science (Editor: C.A.R. Hoare), Prentice Hall International (UK) Ltd

10. Awodey S., 2010, Category Theory, Second Edition, Oxford University Press

11. Grzanek K., 2012, Prerequisites for Effective Requirements Management, Journal

of Applied Computer Science Methods, Vol. 4, No 1, pp. 21-28

12. Grzanek K., 2017, ch GitHub Repository, https://github.com/kongra/ch

13. Grzanek K., 2017, ch Clojars Page, https://clojars.org/kongra/ch

14. Grzanek K., 2017, prelude GitHub Repository, https://github.com/kongra/prelude

15. Grzanek K., 2017, prelude Clojars Page, https://clojars.org/kongra/prelude

16. Grzanek K., 2017, aptell GitHub Repository, https://github.com/kongra/aptell

17. Clojure Team, 2017, clojure.spec Rationale, https://clojure.org/about/spec

18. Clojure Team, 2017, clojure.spec Guide, https://clojure.org/guides/spec

19. Plumatic, 2017, prismatic/schema GitHub Repository, https://github.com/

plumatic/schema

133

Grzanek K.

References

1. Thomas M., 2016, How Can Software Be So Hard?, Gresham College Lecture, Feb.

2016, https://www.youtube.com/watch?v=VfRVz1iqgKU

2. Thomas M., 2015, Should We Trust Computers, Gresham College Lecture, Oct.

2015, https://www.youtube.com/watch?v=8SZfjvlbpMw

3. Pierce B.C., 2002, Types and Programming Languages, 1st Edition, MIT Press,

ISBN-10: 0262162091, ISBN-13: 978-0262162098

4. Pierce B.C., 2004, Advanced Topics in Types and Programming Languages, MIT

Press, ISBN-10: 0262162288, ISBN-13: 978-0262162289

5. Lamport L., 2002, Specifying Systems, The TLA+ Language and Tools for Hardware

and Software Engineers, Addison Wesley, ISBN: 0-321-14306-X

6. Lamport L., Paulson L.L., 1999, Should Your Specification Language Be Typed?,

ACM Transactions on Programming Languages and Systems, Vol. 21, No. 3, pp.

502-526

7. Emerick Ch., Carper B., Grand Ch., 2012, Clojure Programming, O’Reilly Media

Inc., ISBN: 978-1-449-39470-7

8. Fogus M., Houser Ch., 2014, The Joy of Clojure, Manning Publications; 2 edition,

ISBN-10: 1617291412, ISBN-13: 978-1617291418

9. Bird R., Wadler R., 1988, Introduction to Functional Programming. Series in Com-

puter Science (Editor: C.A.R. Hoare), Prentice Hall International (UK) Ltd

10. Awodey S., 2010, Category Theory, Second Edition, Oxford University Press

11. Grzanek K., 2012, Prerequisites for Effective Requirements Management, Journal

of Applied Computer Science Methods, Vol. 4, No 1, pp. 21-28

12. Grzanek K., 2017, ch GitHub Repository, https://github.com/kongra/ch

13. Grzanek K., 2017, ch Clojars Page, https://clojars.org/kongra/ch

14. Grzanek K., 2017, prelude GitHub Repository, https://github.com/kongra/prelude

15. Grzanek K., 2017, prelude Clojars Page, https://clojars.org/kongra/prelude

16. Grzanek K., 2017, aptell GitHub Repository, https://github.com/kongra/aptell

17. Clojure Team, 2017, clojure.spec Rationale, https://clojure.org/about/spec

18. Clojure Team, 2017, clojure.spec Guide, https://clojure.org/guides/spec

19. Plumatic, 2017, prismatic/schema GitHub Repository, https://github.com/

plumatic/schema

20. Clojure Team, 2017, clojure/core.typed GitHub Repository, https://github.com/

clojure/core.typed

21. CircleCI, 2015, Why we’re no longer using core.typed, https://circleci.com/blog/

why-were-no-longer-using-core-typed/

22. Hacker News, 2015, Why were no longer using core.typed - discussion, https://

news.ycombinator.com/item?id=10271149

A Appendix: Selected Pre-defined Checks

In the beginning we define the following type checks for basic types (classes) belonging

to the standard Clojure library and/or forming the Clojure run-time environment:

;; COMMON CHS

(defchC chAgent clojure.lang.Agent)

(defchC chAtom clojure.lang.Atom)

(defchC chASeq clojure.lang.ASeq)

(defchC chBoolean Boolean)

(defchC chDeref clojure.lang.IDeref)

(defchC chDouble Double)

(defchC chIndexed clojure.lang.Indexed)

(defchC chLazy clojure.lang.LazySeq)

(defchC chLong Long)

(defchC chLookup clojure.lang.ILookup)

(defchC chRef clojure.lang.Ref)

(defchC chSeqable clojure.lang.Seqable)

(defchC chSequential clojure.lang.Sequential)

Another family of the basic checks is the checks defined upon some essential predicates

belonging to the standard library of the language:

(defch chAssoc ‘(ch associative?))

(defch chChar ‘(ch char?))

(defch chClass ‘(ch class?))

(defch chColl ‘(ch coll?))

(defch chCounted ‘(ch counted?))

(defch chDecimal ‘(ch decimal?))

(defch chDelay ‘(ch delay?))

(defch chFloat ‘(ch float?))

(defch chFn ‘(ch fn?))

(defch chFuture ‘(ch future?))

(defch chIfn ‘(ch ifn?))

(defch chInteger ‘(ch integer?))

(defch chKeyword ‘(ch keyword?))

(defch chList ‘(ch list?))

(defch chMap ‘(ch map?))

(defch chNumber ‘(ch number?))

(defch chRatio ‘(ch ratio?))

(defch chRational ‘(ch rational?))

134

 Low-Cost Dynamic Constraint ...

(defch chRecord ‘(ch record?))

(defch chReduced ‘(ch reduced?))

(defch chReversible ‘(ch reversible?))

(defch chSeq ‘(ch seq?))

(defch chSorted ‘(ch sorted?))

(defch chString ‘(ch string?))

(defch chSymbol ‘(ch symbol?))

(defch chVar ‘(ch var?))

(defch chVec ‘(ch vector?))

Finally we introduce type checks for few basic Java collection interfaces. It is worth

mentioning, that all Clojure collections implement one of these interfaces:

(defchC chJavaColl java.util.Collection)

(defchC chJavaList java.util.List)

(defchC chJavaMap java.util.Map)

(defchC chJavaSet java.util.Set)

B Appendix: Selected Tests

The ch library is covered with unit tests. Here we present few of them to give the

reader another opportunity to get familiar with syntax and behavior of the library. In

the following codes we use the namespace definition as below:

(ns kongra.ch-test

(:require [clojure.test :refer :all]

[kongra.ch :refer :all]))

First of all let’s define few types with their accompanying type checks:

(deftype X []) (defchC chX X)

(deftype Y []) (defchC chY Y)

(deftype Z []) (defchC chZ Z)

We also define the following simple checks of various kinds:

(defch chMaybeX ‘(chMaybe chX))

(defch chEitherXUnit ‘(chEither chX chUnit))

(defch chEitherXY ‘(chEither chX chY))

(defch chXYZ ‘(ch| [chX chY chZ]))

(defch chMaybeLike1 ‘(chMaybe (chLike 1)))

(defch chEitherLC ‘(chEither (chC Long) (chC Character)))

(defch chEitherLC’

‘(chEither (ch (instance? Long)) (ch (instance? Character))))

as well as the compound one:

(defch chCompound1

‘(chEither

(chMaybe (chLike "aaa"))

(chEither (chMaybe (ch (instance? Long)))

(chMaybe (ch (instance? Character))))))

135

Grzanek K.

(defch chRecord ‘(ch record?))

(defch chReduced ‘(ch reduced?))

(defch chReversible ‘(ch reversible?))

(defch chSeq ‘(ch seq?))

(defch chSorted ‘(ch sorted?))

(defch chString ‘(ch string?))

(defch chSymbol ‘(ch symbol?))

(defch chVar ‘(ch var?))

(defch chVec ‘(ch vector?))

Finally we introduce type checks for few basic Java collection interfaces. It is worth

mentioning, that all Clojure collections implement one of these interfaces:

(defchC chJavaColl java.util.Collection)

(defchC chJavaList java.util.List)

(defchC chJavaMap java.util.Map)

(defchC chJavaSet java.util.Set)

B Appendix: Selected Tests

The ch library is covered with unit tests. Here we present few of them to give the

reader another opportunity to get familiar with syntax and behavior of the library. In

the following codes we use the namespace definition as below:

(ns kongra.ch-test

(:require [clojure.test :refer :all]

[kongra.ch :refer :all]))

First of all let’s define few types with their accompanying type checks:

(deftype X []) (defchC chX X)

(deftype Y []) (defchC chY Y)

(deftype Z []) (defchC chZ Z)

We also define the following simple checks of various kinds:

(defch chMaybeX ‘(chMaybe chX))

(defch chEitherXUnit ‘(chEither chX chUnit))

(defch chEitherXY ‘(chEither chX chY))

(defch chXYZ ‘(ch| [chX chY chZ]))

(defch chMaybeLike1 ‘(chMaybe (chLike 1)))

(defch chEitherLC ‘(chEither (chC Long) (chC Character)))

(defch chEitherLC’

‘(chEither (ch (instance? Long)) (ch (instance? Character))))

as well as the compound one:

(defch chCompound1

‘(chEither

(chMaybe (chLike "aaa"))

(chEither (chMaybe (ch (instance? Long)))

(chMaybe (ch (instance? Character))))))

Here the test cases follow:

(testing "(ch ...)"

(is (thrown? AssertionError (ch (nil?) 1)))

(is (nil? (ch (nil?) nil)))

(is (false? (ch (nil?) nil 1)))

(is (true? (ch (nil?) nil nil))))

(testing "(ch ...) with symbolic preds"

(is (thrown? AssertionError (ch nil? 1)))

(is (nil? (ch nil? nil)))

(is (false? (ch nil? nil 1)))

(is (true? (ch nil? nil nil))))

(testing "(chC ...)"

(is (= "" (chC String "")))

(is (thrown? AssertionError (chC String 1)))

(is (thrown? AssertionError (chC String nil)))

(is (true? (chC String nil "")))

(is (false? (chC String nil 1)))

(is (false? (chC String nil nil))))

(testing "(defchC ...)"

(is (chX (X.)))

(is (thrown? AssertionError (chX 1)))

(is (thrown? AssertionError (chX nil)))

(is (true? (chX nil (X.))))

(is (false? (chX nil 1)))

(is (false? (chX nil nil))))

(testing "(chLike ...)"

(is (chLike 1 2))

(is (thrown? AssertionError (chLike 1 "aaa")))

(is (thrown? AssertionError (chLike "aaa" 2)))

(is (thrown? AssertionError (chLike 1 nil)))

(is (true? (chLike 2/3 nil 3/4)))

(is (false? (chLike 1 nil "aaa")))

(is (false? (chLike "aaa" nil 2)))

(is (false? (chLike 1 nil nil))))

(testing "(chUnit ...)"

(is (nil? (chUnit nil)))

(is (thrown? AssertionError (chUnit 1)))

(is (true? (chUnit nil nil)))

(is (false? (chUnit nil ""))))

(testing "(chSome ...)"

(is (chSome 1))

136

 Low-Cost Dynamic Constraint ...

(is (thrown? AssertionError (chSome nil)))

(is (true? (chSome nil "")))

(is (false? (chSome nil nil))))

(testing "(chMaybe ...)"

(is (nil? (chMaybe chX nil)))

(is (chMaybe chX (X.)))

(is (thrown? AssertionError (chMaybe chX (Y.))))

(is (true? (chMaybe chX nil nil)))

(is (true? (chMaybe chX nil (X.))))

(is (false? (chMaybe chX nil (Y.))))

(is (nil? (chMaybe chUnit nil)))

(is (thrown? AssertionError (chMaybe chUnit (X.))))

(is (thrown? AssertionError (chMaybe chUnit (Y.)))))

(testing "(chEither ...)"

(is (nil? (chEither chX chUnit nil)))

(is (chEither chX chUnit (X.)))

(is (thrown? AssertionError (chEither chX chUnit (Y.))))

(is (chEither chX chY (X.)))

(is (chEither chX chY (Y.)))

(is (thrown? AssertionError (chEither chX chY (Z.))))

(is (thrown? AssertionError (chEither chX chY nil)))

(is (true? (chEither chX chUnit nil nil)))

(is (true? (chEither chX chUnit nil (X.))))

(is (false? (chEither chX chUnit nil (Y.))))

(is (true? (chEither chX chY nil (X.))))

(is (true? (chEither chX chY nil (Y.))))

(is (false? (chEither chX chY nil (Z.))))

(is (false? (chEither chX chY nil nil))))

(testing "(chCompound1 ...)"

(is (chCompound1 (+ 1 2 3 4)))

(is (chCompound1 \c))

(is (chCompound1 "xyz"))

(is (nil? (chCompound1 nil)))

(is (thrown? AssertionError (chCompound1 3/4)))

(is (true? (chCompound1 nil (+ 1 2 3 4))))

(is (true? (chCompound1 nil \c)))

(is (true? (chCompound1 nil "xyz")))

(is (true? (chCompound1 nil nil)))

(is (false? (chCompound1 nil 3/4))))

