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Abstract 
This paper describes a number of experiments to compare and validate the 
performance of machine learning classifiers. Creating machine learning models 
for data with wide varieties has huge applications in predictive modelling 
across multiple domain of science. This work reviews state of the art techniques 
in machine learning classifiers methods with several extent of magnitude in 
statistics and key findings that will be helpful in establishing best 
methodological practices for class predictions. Comprehensive comparative 
review analysis with statistical validations for various machine learning 
algorithm for SVM, Bagging, Boosting, Decision Trees and Nearest 
Neighborhood algorithm on multiple data sets is carried out. Focus on the 
statistical analysis of the results using Friedman-Test and Wilcoxon Test as 
well as other interpretative metrics like classification rate, ROC, F-measure are 
evaluated to benchmark results. 
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1 Introduction 

Given the different types of input instances with output labels, predicting the 
output using machine learning tasks has been challenging for quite some time. 
The newly developed machine learning methods follows a rigorous criterion 
of analysis against previous approaches to verify its correctness of 
predictions. The results rely on choosing possibilities between output cases 
and empirical comparisons measuring the performance derived from the 
configuration parameters of the experiments. In order to set up on a firm 
conclusion on a radical learning technique, the statistical validation of 
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produced results is a requisite in current times. Many approaches have been 
proposed in  present-years contributing towards optimized and transformed 
features and there by using well known machine learning techniques with out 
assuming independence or relationships among attributes making 
interpretable, dense and accurate learning models. Classification is mostly 
beneficial when the examples collected in a database can be used as the 
foundation for making future decisions; e.g., for judging risks for credit, 
analysing scientific data and for diagnosis of diseases taking biological data. 
Scientists have established extensive variety of classification algorithms 
namely decision tree, nearest neighbor, support vector machines, boosting, 
and bagging. 

The comparative study should perhaps be done with utmost significance 
using a statistically adequate background. Pattern recognition with enhanced 
feature selection assigning groups or classes to data instances could be 
executed for either models that are based on supervised classification or 
models that extract relationships between objects and its properties namely 
clustering or unsupervised classification. 

Even though plenty of work can be found in literature that describes more 
appropriate classifiers for particular tasks, only limited studies reflect a more 
systematic statistical analysis with regards to their performance. The typical 
initial outcome of this work is to find the performance of various machine 
learning classifiers under various parameter settings taking detailed input 
values from multiple data sets.  

Evaluating classifiers giving priority to maximum accuracy alone under 
different classifier parameters for specific tuned data and values is usually not 
the best approach, because for a different dataset the result would be different 
for most of the cases. Since the key study in this work is evaluation of 
practical results comparing classifiers, the outcome of classifiers with 
generative models are compared to the discriminative models. Specifically the 
effect of varied data sets on average classifier classification results performed 
with wide-ranging experiments are explored. The behavior of feature 
combination and class labels can be briefly explained using the framework 
with some of the machine learning techniques like kNN, SVM, Boosted and 
Bagged Trees. Data scientists typically investigate with different classifiers 
taking varied features and data sets to compare with specialized guidelines. It 
should be dealt with  caution that the detailed experiments carried out, not 
applying specific statistical tests could lead to invalid inferences. The degree 
to which the contending classifiers, disagree or agree on output class values 
deliver evidence about reliability of classification output over perceived input 
data sets. The fraction of class instances that are positive and correctly 
predicted is indicated by classifier sensitivity and likewise specificity is the 
fraction of negative class instances that are correctly predicted [1]. 
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Performances are evaluated for CHAID, neural network and logistic 
regression for imbalanced data set executed in an actual marketing application 
of a bank in [2]. The classifier performance for k-NN, Naive Bayes, SVM, 
LDA and Decision Tree are evaluated using characteristics including 
specificity, sensitivity, classification accuracy, computational time and kappa 
in [3].  Analysis of ROC towards results in machine learning, describing 
various challenges and providing concise substitute methods to ROC analysis 
like Lift chart, Calibration chart, Detection error trade-off curve had been 
discussed in [4]. Sentiment analysis and opinion mining for business analytics 
and market research scrutinizing word-of-mouth data for movie reviews are 
explored using support vector machines, neural network and bayesian 
decision tree in [5]. In [6]  the influence of lexically normalized, naive, and 
semantic features on the performance of classifier for various diseases have 
been assessed using support vector machines. Statistical tests for evaluations 
of machine learning algorithms on several data sets using Wilcoxon signed 
ranks test and Friedman test is detailed in [7] The raisins superiority for 
agriculture is graded by means of machine learning techniques after selecting 
the best features using feature selection based on correlation in [8].  Data from 
wireless kinematic sensors for the job of physical movement recognition is 
taken for comparing the performance of AdaBoostM1 as the classifier of meta 
level with base level classifier C4.5 Graft in [9].  Investigating classifier 
performance with optimization to categorize non-randomized readings and 
classification of biomedical quotations for text selection using organized 
reviews are studied in [10]. Classifiers namely Support vector machines, 
Conditional Random fields and Latent Dynamic conditional random fields are 
compared for user intention understanding in analysing web search engines 
was shown in [11]. Soil profiles were analysed, sampled, selected and 
predicted for taxonomic soil class after investigating the classification power 
of data mining classifiers in [12]. Chi-Square Methods and R- Square 
techniques were used for high dimensional curve fitting using machine 
learning in [36]. A review was carried out for forecasting the share trading 
from the stock market database using state of the art machine learning in [35]. 

2 Support vector machines with kernel evaluation 

To classify instances of two classes using SVM, the input data x  is mapped 
to higher dimensional space geometry ( )S x  and then devising an optimal 
hyperplane denoted by ꞏ 0w S b   separating the two classes [13]. The 
function is expressed as: 

(1) 
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2. SUPPORT VECTOR MACHINES WITH KERNEL EVALUATION
To classify instances of two classes using SVM, the input data x is mapped to higher

dimensional space geometry ( )S xφ= and then devising an optimal hyperplane denoted by · 0w S b− =
separating the two classes [13]. The function is expressed as:

( ) , ( ) (1)f x w x b= Φ +

which acts as decision boundary and is evaluated thereby using the function Φ that maps x to S space 
which is in higher dimension [14]. The distance is maximized for the set of data points ( )kxΦ that are 
consistent on the training set with hyperplane characterized by ( , )w b . The vector w is represented by: 
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is solved through *
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Table 1. Classification Output Parametrics for Support Vector Machine. 

DataSet Time MAE RMS Prc Rec Fm PRC Class% 

Supermarket 1.69 0.36 0.6 0.41 0.64 0.5 0.54 63.71 

BreastCancer 0.11 0.3 0.55 0.67 0.7 0.68 0.63 69.58 
ContactLense

s 0.1 0.31 0.41 0.69 0.71 0.7 0.65 70.83 

GermanCredit 1.54 0.25 0.5 0.74 0.75 0.74 0.68 75.1 

PimaDiabetes 0.03 0.23 0.48 0.77 0.77 0.76 0.7 77.34 

Glass 0.81 0.21 0.32 0.52 0.56 0.52 0.48 56.07 

Hypothyroid 7.73 0.26 0.32 0.89 0.94 0.91 0.88 93.61 

Ionosphere 0.36 0.11 0.34 0.89 0.89 0.88 0.83 88.6 

Iris 0.13 0.23 0.29 0.96 0.96 0.96 0.94 96 

Labor 0.21 0.11 0.32 0.89 0.9 0.89 0.85 89.47 

Soybean 1.81 0.09 0.21 0.94 0.94 0.94 0.91 93.85 

Vote 0.36 0.04 0.2 0.96 0.96 0.96 0.94 96.09 

Weather 0.05 0.43 0.65 0.53 0.57 0.54 0.54 57.14 

Segment 0.59 0.21 0.3 0.92 0.92 0.92 0.88 91.93 

Weather 0.05 0.43 0.65 0.53 0.57 0.54 0.54 57.14 

Segment 0.59 0.21 0.3 0.92 0.92 0.92 0.88 91.93 

 
The solution to the above problem is established using the Lagrangian 

formulation and it is shown that 
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denotes Kronecker symbol with ( , ) ( ), ( )k l k lK x x x x   representing the 
Gram matrix data set used for training. The predicted class label for each x
can be computed after examining the sign of ( )f x . 
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The mapped data ( )kx could be contained in the smallest sphere of radius
R . The radius margin bound 224E R w  is evaluated to determine E  i.e 
leave one out error bounds for SVMs. The distance pS between a support 
vector ( )px  that is mapped and the span of all other support vectors 

* 2
p p

p
E S  is used to devise methodically a tighter bound called span 

estimate. SVM with the variable 2
pS  and the quadratic slack variables is 

dependent on 1
1 0sv T

K
K  

  
 

which is the the dot product between support 

vectors extended matrix by the equation 2 11/ ( )p SV PPS K  . We have made use of 
linear Kernel represented by ( , ) ꞏi j i jk x x x x  and quadratic kernel denoted 

2( , ) ( ꞏ 1)i j i jk x x x x   for classifying instances using SVM. 
If the number of instances are fewer than no of features representing the 

dimension space, it would result in an under par performance. It would 
definitely be an undetermined problem to find a hyperplane that fits the data 
in such cases. Then maximizing the margin with optimal parameters in SVM 
to find a solution will not be sufficient enough. Retaining only the features 
that are relevant, the dimensionality of the input space could be reduced [16]. 

The L1 soft-margin expression which is the fundamental problem for 
SVMs is solved by  

(3) 

 
This computational problem explained by its dual form through the kernel 

function implementing the non linear transformation. 

(4) 
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functions used in this paper. 
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Table 1. Classification Output Parametrics for Support Vector Machine.
DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 1.69 0.36 0.6 0.41 0.64 0.5 0.54 63.71

BreastCancer 0.11 0.3 0.55 0.67 0.7 0.68 0.63 69.58

ContactLenses 0.1 0.31 0.41 0.69 0.71 0.7 0.65 70.83

GermanCredit 1.54 0.25 0.5 0.74 0.75 0.74 0.68 75.1

PimaDiabetes 0.03 0.23 0.48 0.77 0.77 0.76 0.7 77.34

Glass 0.81 0.21 0.32 0.52 0.56 0.52 0.48 56.07

Hypothyroid 7.73 0.26 0.32 0.89 0.94 0.91 0.88 93.61

Ionosphere 0.36 0.11 0.34 0.89 0.89 0.88 0.83 88.6

Iris 0.13 0.23 0.29 0.96 0.96 0.96 0.94 96

Labor 0.21 0.11 0.32 0.89 0.9 0.89 0.85 89.47

Soybean 1.81 0.09 0.21 0.94 0.94 0.94 0.91 93.85

Vote 0.36 0.04 0.2 0.96 0.96 0.96 0.94 96.09

Weather 0.05 0.43 0.65 0.53 0.57 0.54 0.54 57.14

Segment 0.59 0.21 0.3 0.92 0.92 0.92 0.88 91.93

Weather 0.05 0.43 0.65 0.53 0.57 0.54 0.54 57.14

Segment 0.59 0.21 0.3 0.92 0.92 0.92 0.88 91.93

The solution to the above problem is established using the Lagrangian formulation and it is shown 
that 

1
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k kk
y α

=
=∑ and , 0k kα∀ ≥ , where ,k lδ denotes Kronecker symbol with ( , ) ( ), ( )k l k lK x x x x= Φ Φ

representing the Gram matrix data set used for training. The predicted class label for each x can be computed 
after examining the sign of ( )f x .
The mapped data ( )kxΦ could be contained in the smallest sphere of radius R . The radius margin bound 

224E R w≤ is evaluated to determine E i.e leave one out error bounds for SVMs. The distance pS

between a support vector ( )pxΦ that is mapped and the span of all other support vectors * 2
p p

p
E Sα≤∑ is 

used to devise methodically a tighter bound called span estimate. SVM with the variable 2
pS and the 

quadratic slack variablesξ is dependent on 
1
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K
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=  
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which is the the dot product between support 

vectors extended matrix by the equation 2 11/ ( )p SV PPS K −= . We have made use of linear Kernel represented by 

( , ) ·i j i jk x x x x= and quadratic kernel denoted 2( , ) ( · 1)i j i jk x x x x= + for classifying instances using 
SVM.
If the number of instances are fewer than no of features representing the dimension space, it would result in 
an under par performance. It would definitely be an undetermined problem to find a hyperplane that fits the 
data in such cases. Then maximizing the margin with optimal parameters in SVM to find a solution will not 
be sufficient enough. Retaining only the features that are relevant, the dimensionality of the input space could 
be reduced [16].

The L1 soft-margin expression which is the fundamental problem for SVMs is solved by 
2 (1min || || where ( · ) 1 , 0

2
3)k k k k k k

i
w C y w z bξ ξ ξ+ − ≥ − ≥ ∀∑

.
This computational problem explained by its dual form through the kernel function implementing 

the non linear transformation.
1max ( , ) where 0 0 where ( , ) ( )· ( ) (4)
2i k j k j k j k k k k k j k j

i k j k
y y k x x C y k x x x xα α α α α φ φ− ≤ ≤ ∀ = =∑ ∑∑ ∑

Gaussian kernel represented by 
2

2( , ) exp
2

k j
k j

x x
k x x

σ

 − = −
 
 

and Polynomial kernel denoted by 

( , ) (1 · )d
k j k jk x x x x= + are other popular kernel functions used in this paper.

Table 2. Classification Output Parametrics for Decision Stump.

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 0.13 0.42 0.46 0.68 0.64 0.65 0.64 64.4

BreastCancer 0.05 0.38 0.44 0.68 0.69 0.68 0.63 68.53

ContactLenses 0.01 0.23 0.36 0.71 0.71 0.68 0.71 70.83

GermanCredit 0.08 0.38 0.43 0.49 0.7 0.58 0.68 70

PimaDiabetes 0.05 0.38 0.44 0.72 0.72 0.72 0.68 71.88

Glass 0.01 0.18 0.3 0.21 0.45 0.28 0.34 44.86

Hypothyroid 0.21 0.03 0.12 0.95 0.95 0.95 0.95 95.39

Ionosphere 0.15 0.27 0.37 0.86 0.83 0.81 0.75 82.62

Iris 0.01 0.22 0.33 0.5 0.67 0.56 0.67 66.67

Labor 0.01 0.21 0.34 0.81 0.81 0.8 0.84 80.7

Soybean 0.01 0.08 0.2 0.13 0.28 0.16 0.21 27.96

Vote 0.01 0.08 0.2 0.96 0.96 0.96 0.93 95.63

Weather 0.02 0.49 0.59 0.29 0.29 0.29 0.58 28.57

Segment 0.11 0.21 0.32 0.11 0.3 0.16 0.28 30.4

3. DECISION TREES FOR INDEPENDENT OBSERVATIONS
A decision tree is a directed acyclic graph form of tree classifier. There is no incoming edges for the  

root of the tree and every internal node have outgoing edges with an incoming edge [17]. We apply binary 
decision trees in this study so that every node has outgoing edges either with number zero or two. The 
leafnode does not have any outgoing edges and is labeled with a class label. The splitting attribute nX or 
predictor attribute is associated with each internal node. If nX denotes a numerical attribute, then nq which 
is the splitting predicate holds the form n nX x≤ and ( )n nx dom X∈ where nx is called the split point of node 
n . If nX denotes a categorical attribute, then nq holds in the form n nX J∈ where ( )n nJ dom X⊂ and nJ
represents the splitting subset at the node n [18]. A classification tree is typically built using training data in 
two phases namely growing phase and pruning phase. The split selection techniques producing binary splits 
at each node is usually established on impurity-based method [19]. The problem of decision tree induction 
formally giving background terminology is indicated as follows: Let random variables be represented as 

1,..., mX X , C . The domain of iX is denoted as ( ) and ( ) {1,2,..., }idom X dom C k= . The decision Tree 
classifier is represented as a function 1: ( ) ... ( ) ( ).md dom X dom X dom C× × � Let the probability 
distribution be represented as ( , )P X C′ ′ and a random record 1. ,... . , .mt t X t X t C= be drawn from P where

1. ,... . mt X t X X ′∈ and .t C C′∈ [20]

Decision tree learning induction using complete observations is as follows: For each data point and its 
neighbors , 1,...,ix i k= , along with a ranking associated as iσ ∈Ω , the probability distribution is denoted as 
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3 DECISION TREES FOR INDEPENDENT OBSERVATIONS 

A decision tree is a directed acyclic graph form of tree classifier. There is no 
incoming edges for the  root of the tree and every internal node have outgoing 
edges with an incoming edge [17]. We apply binary decision trees in this 
study so that every node has outgoing edges either with number zero or two. 
The leafnode  does not have any outgoing edges and is labeled with a class 
label. The splitting attribute nX  or predictor attribute is associated with each 
internal node. If nX  denotes a numerical attribute, then nq  which is the 
splitting predicate holds the form n nX x and ( )n nx dom X  where nx  is 
called the split point of node n . If nX denotes a categorical attribute, then nq
holds in the form n nX J where ( )n nJ dom X and nJ represents the splitting 
subset at the node n [18].  A classification tree is typically built using training 
data in two phases namely growing phase and pruning phase. The split 
selection techniques producing binary splits at each node is usually 
established on impurity-based method [19].  The problem of decision tree 
induction formally giving background terminology is indicated as follows: Let 
random variables be represented as 1,..., mX X , C . The domain of iX is 
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denoted as ( ) and ( ) {1,2,..., }idom X dom C k . The decision Tree classifier is 
represented as a function 1: ( ) ... ( ) ( ).md dom X dom X dom C  a  Let the 
probability distribution be represented as ( , )P X C   and a random record 

1. ,... . , .mt t X t X t C be drawn from P where 1. ,... . mt X t X X   and .t C C  
[20] 

Decision tree learning induction using complete observations is as follows: 
For each data point and its neighbors , 1,...,ix i k , along with a ranking 
associated as i  , the probability distribution is denoted as  . |P x  on 
which is locally constant. Since the observations are assumed to be 
independent and 1{ ,... }k    with the parameters  ,  , the probability is 
observed as 

 

(5) 

Table 3. Classification Output Parametrics for J48. 

DataSet Time MAE RMS Prc Rec Fm PRC Class% 

Supermarket 0.28 0.46 0.48 0.41 0.64 0.5 0.54 63.71 

BreastCancer 0.11 0.37 0.43 0.75 0.76 0.71 0.65 75.52 

ContactLenses 0.08 0.15 0.32 0.85 0.83 0.84 0.81 83.33 

GermanCredit 0.39 0.35 0.48 0.69 0.71 0.69 0.66 70.5 

PimaDiabetes 0.28 0.32 0.45 0.74 0.74 0.74 0.73 73.83 

Glass 0.03 0.1 0.29 0.67 0.67 0.67 0.61 66.82 

Hypothyroid 0.58 0 0.04 1 1 1 1 99.58 

Ionosphere 0.37 0.09 0.29 0.92 0.92 0.91 0.88 91.45 

Iris 0.06 0.04 0.16 0.96 0.96 0.96 0.92 96 

Labor 0.05 0.32 0.47 0.75 0.74 0.74 0.68 73.68 

Soybean 0.31 0.01 0.08 0.92 0.92 0.91 0.92 91.51 

Vote 0.17 0.06 0.17 0.96 0.96 0.96 0.96 96.32 

Weather 0.01 0.29 0.48 0.63 0.64 0.63 0.81 64.29 

Segment 0.4 0.01 0.11 0.96 0.96 0.96 0.95 95.73 

 
The parameter  ,   has the maximum likelihood estimation for   given 

as  
1

ˆ arg min ,
k

i
i

D


  


   [21]. 
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( ). |P x on Ω which is locally constant. Since the observations are assumed to be independent and 

1{ ,... }kσ σ σ= with the parameters ( ),θ π , the probability is observed as

Table 3. Classification Output Parametrics for J48.
DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 0.28 0.46 0.48 0.41 0.64 0.5 0.54 63.71

BreastCancer 0.11 0.37 0.43 0.75 0.76 0.71 0.65 75.52

ContactLenses 0.08 0.15 0.32 0.85 0.83 0.84 0.81 83.33

GermanCredit 0.39 0.35 0.48 0.69 0.71 0.69 0.66 70.5

PimaDiabetes 0.28 0.32 0.45 0.74 0.74 0.74 0.73 73.83

Glass 0.03 0.1 0.29 0.67 0.67 0.67 0.61 66.82

Hypothyroid 0.58 0 0.04 1 1 1 1 99.58

Ionosphere 0.37 0.09 0.29 0.92 0.92 0.91 0.88 91.45

Iris 0.06 0.04 0.16 0.96 0.96 0.96 0.92 96

Labor 0.05 0.32 0.47 0.75 0.74 0.74 0.68 73.68

Soybean 0.31 0.01 0.08 0.92 0.92 0.91 0.92 91.51

Vote 0.17 0.06 0.17 0.96 0.96 0.96 0.96 96.32

Weather 0.01 0.29 0.48 0.63 0.64 0.63 0.81 64.29

Segment 0.4 0.01 0.11 0.96 0.96 0.96 0.95 95.73

( ) ( )
1

exp ,
| , (5)

( )

k
i

i

D
P

θ σ π
σ θ π

φ θ=

−
=∏

The parameter ( ),θ π has the maximum likelihood estimation for π given as ( )
1

ˆ arg min ,
k

i
i

D
π

π σ π
=

= ∑ [21].

4. AGGREGATED BAGGING FOR BOOTSTRAP SAMPLES
Classifier optimization worked over estimation of error rate and model selection while learning from 

sample data sets can conclude in bias and over fitting [22]. This could result in an unstable classification 
model being generated and could be improved by the aggregation of classifiers. Bagged classification trees 
could solve to reduce misclassification error substantially in most of the applications and bench mark 
problems [23]

Table 4. Classification Output Parametrics for Bagging.

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 2.33 0.46 0.48 0.41 0.64 0.5 0.54 63.71

BreastCancer 0.09 0.38 0.45 0.64 0.69 0.64 0.69 69.23

ContactLenses 0.03 0.31 0.4 0.53 0.58 0.55 0.77 58.33

GermanCredit 0.28 0.33 0.42 0.73 0.75 0.73 0.77 74.7

PimaDiabetes 0.51 0.32 0.41 0.75 0.76 0.75 0.81 75.78

Glass 0.03 0.12 0.24 0.71 0.72 0.71 0.76 72.43

Hypothyroid 1.4 0 0.05 1 1 1 1 99.52

Ionosphere 0.47 0.14 0.26 0.91 0.91 0.91 0.95 91.17

Iris 0.09 0.05 0.17 0.94 0.94 0.94 0.98 94
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4 Aggregated bagging for bootstrap samples 

 Classifier optimization worked over estimation of error rate and model 
selection while learning from sample data sets can conclude in bias and over 
fitting [22]. This could result in an unstable classification model being 
generated and could be improved by the aggregation of classifiers. Bagged 
classification trees could solve to reduce misclassification error substantially 
in most of the applications and bench mark problems [23] 

Table 4. Classification Output Parametrics for Bagging. 

DataSet Time MAE RMS Prc Rec Fm PRC Class% 

Supermarket 2.33 0.46 0.48 0.41 0.64 0.5 0.54 63.71 

BreastCancer 0.09 0.38 0.45 0.64 0.69 0.64 0.69 69.23 
ContactLense

s 0.03 0.31 0.4 0.53 0.58 0.55 0.77 58.33 
GermanCredi

t 0.28 0.33 0.42 0.73 0.75 0.73 0.77 74.7 

PimaDiabetes 0.51 0.32 0.41 0.75 0.76 0.75 0.81 75.78 

Glass 0.03 0.12 0.24 0.71 0.72 0.71 0.76 72.43 

Hypothyroid 1.4 0 0.05 1 1 1 1 99.52 

Ionosphere 0.47 0.14 0.26 0.91 0.91 0.91 0.95 91.17 

Iris 0.09 0.05 0.17 0.94 0.94 0.94 0.98 94 

Labor 0.29 0.3 0.38 0.84 0.84 0.84 0.86 84.21 

Soybean 0.39 0.03 0.11 0.84 0.86 0.84 0.92 85.65 

Vote 0.3 0.07 0.17 0.96 0.96 0.96 0.98 95.63 

Weather 0.02 0.53 0.56 0.38 0.5 0.43 0.44 50 

Segment 0.7 0.02 0.1 0.96 0.96 0.96 0.99 95.87 
 
 

Let {( , ), 1,..., }k kL x y k N  denotes learning from N observations of 
independent sample that comprise of predictors which are q  dimensional 
vectors denoted by 1( ,..., .) P

k k kpx x x R   The learning sample have 
observations assumed to be identical distributed and random variables that are 
independent with a distinct distribution function 

1 1where ( , ),..., ( ,..., ) ~L N N LF x y x y F . The class denoted y-values for the 
subsequent data is predicted by the classifier ( , )C x L%  from a set of vector of 
parameters x% established through the learning sample L  [24]. 
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Let the distribution be denoted by ,x yF%% for future observations represented 
by ( , )x y%%. To maintain stability for the classifiers C over averaged multiple 
learning samples, classifier AC  is aggregated for the observation x% and is 
illustrated as ( ) ( , ).A F LC x E C x L% %  The learning samples L and its expectation 
is distributed accordingly as LF . 

The aggregated rule ( )AC x%  applying bootstrap as shown by 
*ˆ ( ) ( , )A F LC x E C x L% % , is measured by bagging where *L denotes a random 

sample from the formulated distribution evaluated from samples and is 
denoted by the function * * * *

1 1. ( , ),..., ( , ) ~L N N LF x y x y F%. 
Based on B the bootstrap samples, the bagged classifier ˆ B

AC  is computed 
as follows. Initially B samples L of size N are drawn randomly *(1) *( ),..., BL L  
with replacement. 

The iterative algorithm for Bagging is shown as follows:  
1. The bootstrap sample *( )bL  is used to create the classifier C . 
2. Classifier model is constructed iteratively for all bootstrap samples 

  1,..., .b B  
3. A new instance x% is classified as, 
 

(6) 

we apply majority voting where   is the indicator function 

(7) 

 
To summarize performance of the bagged trees with smaller number of 

splits with smaller node size is found to be better in some data distributions 
than maximal unpruned trees and that the application requires careful tuning 
of the relevant classifier parameters while applying bagging [25]. 

5 Combining hypothesis with boosting 

In boosting the weak rules or hypotheses which are moderately accurate 
are combined to design a classification rule that are highly accurate [26].  A 
single rule combined hypothesis is then linearly combined from these weak 
hypotheses. The predictive model function denoted by :f R  is designed 
so that for example x and ( )f x , the sign illustrated as (-1 or +1) indicates the 
predicted class and the magnitude | ( ) |f x is evaluated as the confidence 
measure while creating a predictive model for learning [27]. 

Labor 0.29 0.3 0.38 0.84 0.84 0.84 0.86 84.21

Soybean 0.39 0.03 0.11 0.84 0.86 0.84 0.92 85.65

Vote 0.3 0.07 0.17 0.96 0.96 0.96 0.98 95.63

Weather 0.02 0.53 0.56 0.38 0.5 0.43 0.44 50

Segment 0.7 0.02 0.1 0.96 0.96 0.96 0.99 95.87

Let {( , ), 1,..., }k kL x y k N= = denotes learning from N observations of independent sample that comprise of 
predictors which are q − dimensional vectors denoted by 1( ,..., .) P

k k kpx x x R= ∈ The learning sample have 
observations assumed to be identical distributed and random variables that are independent with a distinct 
distribution function 1 1where ( , ),..., ( ,..., ) ~L N N LF x y x y F . The class denoted y-values for the subsequent 
data is predicted by the classifier ( , )C x L� from a set of vector of parameters x� established through the 
learning sample L [24].
Let the distribution be denoted by ,x yF�� for future observations represented by ( , )x y�� . To maintain stability 
for the classifiers C over averaged multiple learning samples, classifier AC is aggregated for the observation 
x� and is illustrated as ( ) ( , ).A F LC x E C x L=� � The learning samples L and its expectation is distributed 
accordingly as LF .

The aggregated rule ( )AC x� applying bootstrap as shown by *ˆ ( ) ( , )A F LC x E C x L=� � , is measured by bagging 
where *L denotes a random sample from the formulated distribution evaluated from samples and is denoted 
by the function * * * *

1 1. ( , ),..., ( , ) ~L N N LF x y x y F� .

Based on B the bootstrap samples, the bagged classifier ˆ B
AC is computed as follows. Initially B samples L of 

size N are drawn randomly *(1) *( ),..., BL L with replacement.

The iterative algorithm for Bagging is shown as follows: 
1. The bootstrap sample *( )bL is used to create the classifier C . 
2. Classifier model is constructed iteratively for all bootstrap samples   1,..., .b B=
3. A new instance x�is classified as,

*( )
{ }

{1,2} 1

ˆ arg max ( ( , )) (6)
B

B b
A j

j b
C C x Lχ

∈ =

= ∑ �

we apply majority voting where χ is the indicator function
1

( ) (7)
0Z

x Z
x

else
χ

∈
= 


To summarize performance of the bagged trees with smaller number of splits with smaller node size is found 
to be better in some data distributions than maximal unpruned trees and that the application requires careful 
tuning of the relevant classifier parameters while applying bagging [25].

5. COMBINING HYPOTHESIS WITH BOOSTING
In boosting the weak rules or hypotheses which are moderately accurate are combined to design a 
classification rule that are highly accurate [26]. A single rule combined hypothesis is then linearly combined 
from these weak hypotheses. The predictive model function denoted by :f Rχ → is designed so that for 
example x and ( )f x , the sign illustrated as (-1 or +1) indicates the predicted class and the magnitude 
| ( ) |f x is evaluated as the confidence measure while creating a predictive model for learning [27].

The training sample S represented by: 1{( , )}m
i i iS x y == contains input features x and output label y .

Let 1D be the distribution and is initialized for all 1( ) 1/D i m= , 1i i m∀ ≤ ≤ .

Labor 0.29 0.3 0.38 0.84 0.84 0.84 0.86 84.21

Soybean 0.39 0.03 0.11 0.84 0.86 0.84 0.92 85.65

Vote 0.3 0.07 0.17 0.96 0.96 0.96 0.98 95.63

Weather 0.02 0.53 0.56 0.38 0.5 0.43 0.44 50

Segment 0.7 0.02 0.1 0.96 0.96 0.96 0.99 95.87

Let {( , ), 1,..., }k kL x y k N= = denotes learning from N observations of independent sample that comprise of 
predictors which are q − dimensional vectors denoted by 1( ,..., .) P

k k kpx x x R= ∈ The learning sample have 
observations assumed to be identical distributed and random variables that are independent with a distinct 
distribution function 1 1where ( , ),..., ( ,..., ) ~L N N LF x y x y F . The class denoted y-values for the subsequent 
data is predicted by the classifier ( , )C x L� from a set of vector of parameters x� established through the 
learning sample L [24].
Let the distribution be denoted by ,x yF�� for future observations represented by ( , )x y�� . To maintain stability 
for the classifiers C over averaged multiple learning samples, classifier AC is aggregated for the observation 
x� and is illustrated as ( ) ( , ).A F LC x E C x L=� � The learning samples L and its expectation is distributed 
accordingly as LF .

The aggregated rule ( )AC x� applying bootstrap as shown by *ˆ ( ) ( , )A F LC x E C x L=� � , is measured by bagging 
where *L denotes a random sample from the formulated distribution evaluated from samples and is denoted 
by the function * * * *

1 1. ( , ),..., ( , ) ~L N N LF x y x y F� .

Based on B the bootstrap samples, the bagged classifier ˆ B
AC is computed as follows. Initially B samples L of 

size N are drawn randomly *(1) *( ),..., BL L with replacement.

The iterative algorithm for Bagging is shown as follows: 
1. The bootstrap sample *( )bL is used to create the classifier C . 
2. Classifier model is constructed iteratively for all bootstrap samples   1,..., .b B=
3. A new instance x�is classified as,

*( )
{ }

{1,2} 1

ˆ arg max ( ( , )) (6)
B

B b
A j

j b
C C x Lχ

∈ =

= ∑ �

we apply majority voting where χ is the indicator function
1

( ) (7)
0Z

x Z
x

else
χ

∈
= 


To summarize performance of the bagged trees with smaller number of splits with smaller node size is found 
to be better in some data distributions than maximal unpruned trees and that the application requires careful 
tuning of the relevant classifier parameters while applying bagging [25].

5. COMBINING HYPOTHESIS WITH BOOSTING
In boosting the weak rules or hypotheses which are moderately accurate are combined to design a 
classification rule that are highly accurate [26]. A single rule combined hypothesis is then linearly combined 
from these weak hypotheses. The predictive model function denoted by :f Rχ → is designed so that for 
example x and ( )f x , the sign illustrated as (-1 or +1) indicates the predicted class and the magnitude 
| ( ) |f x is evaluated as the confidence measure while creating a predictive model for learning [27].

The training sample S represented by: 1{( , )}m
i i iS x y == contains input features x and output label y .

Let 1D be the distribution and is initialized for all 1( ) 1/D i m= , 1i i m∀ ≤ ≤ .



32

Friedman and Wilcoxon Evaluations Comparing ...
 

 

The training sample S  represented by: 1{( , )}m
i i iS x y   contains input fea-

tures x and output label y . 
Let 1D  be the distribution and is initialized for all 1 ( ) 1 /D i m , 1i i m  

.The weak hypothesis :th R  is found and later t R   is chosen to update 

the distribution , ,1tD i i m   and 1
1

( ) exp( ( )( ) t i t i
t

t

D i y h x
D i

Z





 . Here tZ  is 

selected with distribution 1tD  . 

Finally the hypothesis is combined and returned as 
1

( ) ( )
T

t t
t

f x h x


 [28]. 

Table 5. Classification Output Parametrics for LogitBoost. 

DataSet Time MAE RMS Prc Rec Fm PRC Class% 

Supermarket 1.16 0.31 0.4 0.76 0.76 0.76 0.81 76.03 

BreastCancer 0.09 0.36 0.44 0.7 0.72 0.71 0.72 72.38 

ContactLenses 0.05 0.19 0.37 0.75 0.75 0.75 0.84 75 

GermanCredit 0.22 0.36 0.43 0.68 0.71 0.68 0.75 70.8 

PimaDiabetes 0.31 0.31 0.41 0.73 0.74 0.74 0.81 74.09 

Glass 0.09 0.1 0.24 0.71 0.72 0.7 0.75 71.5 

Hypothyroid 1.49 0.01 0.04 1 1 1 1 99.58 

Ionosphere 0.23 0.14 0.28 0.91 0.91 0.91 0.95 91.17 

Iris 0.2 0.05 0.18 0.94 0.94 0.94 0.94 94 

Labor 0.06 0.15 0.31 0.89 0.9 0.89 0.91 89.47 

Soybean 0.61 0.01 0.07 0.93 0.93 0.93 0.97 92.97 

Vote 0.23 0.06 0.18 0.96 0.95 0.95 0.99 95.4 

Weather 0.01 0.46 0.6 0.38 0.5 0.43 0.57 50 

Segment 1.27 0.02 0.1 0.96 0.96 0.96 0.99 95.93 
 

 

Figure 1. Boosted Tree Ensemble 
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Figure 2. Weighted Boosting 

 
Let the subset 1X  and 0X  be the examples for which p  predicate holds 

true and does not hold true respectively. If   holds true, then       be 1 
corresponding to that predicate   and 0 otherwise. 

 
The following values for j

bW  is evaluated when { 1, 1}b    and {0,1}j  
for tD , which represents the current distribution. 

(8) 
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The weak hypothesis :th Rχ → is found and later t Rα ∈ is chosen to update the distribution 

, ,1tD i i m∀ ≤ ≤ and 1
1

( ) exp( ( )
( ) t i t i

t
t

D i y h x
D i

Z
α

+

−
= . Here tZ is selected with distribution 1tD + .

Finally the hypothesis is combined and returned as 
1

( ) ( )
T

t t
t

f x h xα
=

= ∑ [28].

Table 5. Classification Output Parametrics for LogitBoost.

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 1.16 0.31 0.4 0.76 0.76 0.76 0.81 76.03

BreastCancer 0.09 0.36 0.44 0.7 0.72 0.71 0.72 72.38

ContactLenses 0.05 0.19 0.37 0.75 0.75 0.75 0.84 75

GermanCredit 0.22 0.36 0.43 0.68 0.71 0.68 0.75 70.8

PimaDiabetes 0.31 0.31 0.41 0.73 0.74 0.74 0.81 74.09

Glass 0.09 0.1 0.24 0.71 0.72 0.7 0.75 71.5

Hypothyroid 1.49 0.01 0.04 1 1 1 1 99.58

Ionosphere 0.23 0.14 0.28 0.91 0.91 0.91 0.95 91.17

Iris 0.2 0.05 0.18 0.94 0.94 0.94 0.94 94

Labor 0.06 0.15 0.31 0.89 0.9 0.89 0.91 89.47

Soybean 0.61 0.01 0.07 0.93 0.93 0.93 0.97 92.97

Vote 0.23 0.06 0.18 0.96 0.95 0.95 0.99 95.4

Weather 0.01 0.46 0.6 0.38 0.5 0.43 0.57 50

Segment 1.27 0.02 0.1 0.96 0.96 0.96 0.99 95.93

Figure 1. Boosted Tree Ensemble

Figure 2. Weighted Boosting

Let the subset 1X and 0X be the examples for which p predicate holds true and does not hold true 
respectively. If π holds true, then  [ ]π   be 1 corresponding to that predicate π and 0 otherwise.

The following values for j
bW is evaluated when { 1, 1}b∈ + − and {0,1}j∈ for tD , which represents the 

current distribution.

1
( ) (8)

m
j

b t i j i
i

W D i x X y b
=

  = ∈ ∧ =  ∑

Table 6. Classification Output Parametrics for AdaBoost.
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Table 6. Classification Output Parametrics for AdaBoost. 

DataSet Time MAE RMS Prc Rec Fm PRC Class% 

Supermarket 1.42 0.33 0.41 0.74 0.75 0.74 0.79 74.86 

BreastCancer 0.42 0.35 0.43 0.69 0.7 0.7 0.73 70.28 

ContactLenses 0.12 0.36 0.41 0.72 0.71 0.69 0.7 70.83 

GermanCredit 0.23 0.36 0.43 0.66 0.7 0.67 0.74 69.5 

PimaDiabetes 0.2 0.31 0.42 0.74 0.74 0.74 0.8 74.35 

Glass 0.01 0.18 0.3 0.21 0.45 0.28 0.34 44.86 

Hypothyroid 0.37 0.03 0.12 0.91 0.93 0.92 0.97 93.21 

Ionosphere 0.22 0.16 0.27 0.92 0.91 0.91 0.94 90.88 

Iris 0.12 0.07 0.17 0.95 0.95 0.95 0.94 95.33 

Labor 0.28 0.15 0.34 0.88 0.88 0.88 0.87 87.72 

Soybean 0.01 0.08 0.2 0.13 0.28 0.16 0.21 27.96 

Vote 0.23 0.06 0.19 0.95 0.95 0.95 0.99 95.4 

Weather 0.02 0.49 0.63 0.53 0.57 0.54 0.52 57.14 

Segment 0.03 0.21 0.32 0.11 0.3 0.16 0.28 30.4 

 
j

bW represents the weight of class b  for the examples used for training in 
partition jX  which follows the distribution tD . Setting t  = 1 and choosing

1

1

1 ln
2

j

j j

Wc
W





 
  

 
, the value for tZ  is minimized for a certain predicate. This 

background indicates that 1 1
{0,1}

2 j j
t

j
Z W W 



   and shows that for boosting's 

generalization error derives an upper bound 

(9) 

The training examples are assumed to be generated over the probability 
distribution Pr[ꞏ] and the training sample generated over empirical probability 
distribution is denoted by P [ꞏ].r  

Though the bound for d  which is the space of VC-dimension for all likely 
base classifiers convert to be very feeble as the rounds T increases, prediction 
using AdaBoost will rapidly overfit with number of rounds which is usually 
moderate. Overfitting normally does not happen on the training examples by 

the notion of margins in the case of boosting. The margin 
( )

( , ) t tt

tt

y h x
x y




 


 

DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 1.42 0.33 0.41 0.74 0.75 0.74 0.79 74.86

BreastCancer 0.42 0.35 0.43 0.69 0.7 0.7 0.73 70.28

ContactLenses 0.12 0.36 0.41 0.72 0.71 0.69 0.7 70.83

GermanCredit 0.23 0.36 0.43 0.66 0.7 0.67 0.74 69.5

PimaDiabetes 0.2 0.31 0.42 0.74 0.74 0.74 0.8 74.35

Glass 0.01 0.18 0.3 0.21 0.45 0.28 0.34 44.86

Hypothyroid 0.37 0.03 0.12 0.91 0.93 0.92 0.97 93.21

Ionosphere 0.22 0.16 0.27 0.92 0.91 0.91 0.94 90.88

Iris 0.12 0.07 0.17 0.95 0.95 0.95 0.94 95.33

Labor 0.28 0.15 0.34 0.88 0.88 0.88 0.87 87.72

Soybean 0.01 0.08 0.2 0.13 0.28 0.16 0.21 27.96

Vote 0.23 0.06 0.19 0.95 0.95 0.95 0.99 95.4

Weather 0.02 0.49 0.63 0.53 0.57 0.54 0.52 57.14

Segment 0.03 0.21 0.32 0.11 0.3 0.16 0.28 30.4

j
bW represents the weight of class b for the examples used for training in partition jX which follows 

the distribution tD . Setting tα = 1 and choosing 1

1

1 ln
2

j

j j

Wc
W

+

−

 
=  

 
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The training examples are assumed to be generated over the probability distribution Pr[·] and the 
training sample generated over empirical probability distribution is denoted by P [·].r

Though the bound for d which is the space of VC-dimension for all likely base classifiers convert to be 
very feeble as the rounds T increases, prediction using AdaBoost will rapidly overfit with number of 
rounds which is usually moderate. Overfitting normally does not happen on the training examples by 

the notion of margins in the case of boosting. The margin 
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for the example ( , )x y

is based on the votes ( )th x along with tα denoting the weights for all hypotheses [29].
The power of settlement for the base classifiers is indicated by the magnitude of the margin and the 
correct prediction combining votes is indicated by the sign it produces. The number of boosting rounds 
is independent on the bound and that the generalization error θ is maximum for the case as shown as:
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Table 7. Classification Output Parametrics for K Nearest Neighbor.
DataSet Time MAE RMS Prc Rec Fm PRC Class%

Supermarket 0.02 0.62 0.78 0.69 0.37 0.21 0.53 37.13

BreastCancer 0.02 0.33 0.51 0.7 0.72 0.7 0.69 72.38

ContactLenses 0.01 0.23 0.32 0.8 0.79 0.8 0.89 79.17

GermanCredit 0.02 0.28 0.53 0.72 0.72 0.72 0.67 72
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6 K-Nearest Neighbour with cost-distance metrics 
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Applying kNN requires choosing a suitable value for k , and the feat of 
classification is greatly dependent on the value of k . Since the kNN method 
is influenced by k and out of several ways of selecting the k value, a modest 
way is to execute the algorithm for several epochs with diverse k values and 
the one which supports the finest performance is chosen. In direction to kNN 
being not to be too much dependent on the selection of k , it is pre-eminent to 
observe sets of multiple nearest neighbours than rather just few k-nearest 
neighbour sets [32]. 

 
 

 

Figure 3. K-Nearest Neighbour 

The extreme cost of kNN for classifying novel instances is mainly due to 
the reason that almost all computation happens during classification time ra-
ther than the training examples when first come across. To relieve the prob-
lem of heavy cost incurred storing the entire training set when it is very large, 
recent studies have attempted to eliminate the redundancy of the training set 
applied to k-Nearest-Neighbours classifier. kNN preserves the entire training 
data for classification and is a learning method which is case-based. Let 

( ), ( ), ( ), ( )i i i iSim d Cls d Rp d Num d   represents the lower bound similarity of 
id  to data values enclosed by iN  the class label of id , an illustration of id  to 

itself and the data tuples enclosed by iN  respectively for the the model creat-
ed .M  The  iSim d value with minimum value is chosen, viz. representative 
with maximum density if equivalent maximal number of neighbours exist for 
more than one neighbour. 

The classification algorithm is illustrated as follows: 
1.  For classification of a novel data tuple td , the similarity to every represen-

tation point in the model M is evaluated. 
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2. If only one representation point is covered for 
, ( ), ( ), ( ), ( ) ,t i i i i td Sim d Cls d Rp d Num d d   is classified as the grouping of 

jd  as followed by the Euclidean distance of jd  to td  has a value less than 
Sim( jd ) 

3.  td  is classified to be the category of the grouping with highest Num( jd ) if 
td  is covered by minimum two symbolic diverse category, following the 

neighbourhood spanning the highest number of data tuples among the da-
taset used for training . 

4. td  is classified to be the category of grouping in which the boundary is 
nearest to td if there is no grouping in the model M that covers td . 

 
The Euclidean distance of td to id subtracted with Sim( id ) indicates the 

Euclidean distance of td to id  represented with the closest boundary [33]. 
Let 1{( , )}n

i i ix y 

r  denote data used for training with n examples labeled us-
ing inputs d

ix R
r  and class labels usually discrete iy . The binary input matrix 

is used {0,1}ijy   to show that the labels iy  and jy match or otherwise. The 
goal learns a linear transformation which could be used to find squared dis-
tances: 2( , ) || ( , ) ||i j i jD x x L x x

r r r r . The cost function parameterized and conclud-
ing the distance metrics has significant terms penalizing heavy distances be-
tween each its target neighbors and input, while the other term penalizes mi-
nor distances between every inputs that does not form similar label and each 
input [34]. 

Precisely, the cost function is computed as: 

(11) 

7 Statistical significance using Friedman test and Wilcoxon test 

Let S and L be the number of +ve class and -ve class in the data set, re-
spectively; let S denote the number of +ve classes that are correctly classified 
by a system, and S  the number of +ve classes misclassified as -ve class. In 
the same way, let L  and L  be the number of -ve classes classified by a sys-
tem as +ve class and    -ve class, respectively. These four values form a con-
tingency table which summarizes the behavior of a system. The widely-used 
measures precision (p), recall (r) and F  are defined as follows: 

(2) If only one representation point is covered for , ( ), ( ), ( ), ( ) ,t i i i i td Sim d Cls d Rp d Num d d< > is classified 
as the grouping of jd as followed by the Euclidean distance of jd to td has a value less than Sim( jd )
(3) td is classified to be the category of the grouping with highest Num( jd ) if td is covered by minimum 
two symbolic diverse category, following the neighbourhood spanning the highest number of data tuples 
among the dataset used for training .
(4) td is classified to be the category of grouping in which the boundary is nearest to td if there is no 
grouping in the model M that covers td .
The Euclidean distance of td to id subtracted with Sim( id ) indicates the Euclidean distance of td to id
represented with the closest boundary [33].

Let 1{( , )}n
i i ix y =

� denote data used for training with n examples labeled using inputs d
ix R∈
� and class labels 

usually discrete iy . The binary input matrix is used {0,1}ijy ∈ to show that the labels iy and jy match or 
otherwise. The goal learns a linear transformation which could be used to find squared distances: 

2( , ) || ( , ) ||i j i jD x x L x x=
� � � � . The cost function parameterized and concluding the distance metrics has significant

terms penalizing heavy distances between each its target neighbors and input, while the other term penalizes 
minor distances between every inputs that does not form similar label and each input [34].
Precisely, the cost function is computed as:
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7. STATISTICAL SIGNIFICANCE USING FRIEDMAN TEST AND WILCOXON TEST

Let S and L be the number of +ve class and -ve class in the data set, respectively; let S+ denote the number of 
+ve classes that are correctly classified by a system, and S− the number of +ve classes misclassified as -ve 
class. In the same way, let L+ and L− be the number of -ve classes classified by a system as +ve class and    
-ve class, respectively. These four values form a contingency table which summarizes the behavior of a 
system. The widely-used measures precision (p), recall (r) and Fβ are defined as follows:
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We apply Friedman Test when we cannot assume that the data from each of groups are normally distributed 
populations. Blocks of data are assumed to be independent and the underlying variable in the data are mostly 
numeric in nature. When compared to F test, the Friedman rank test makes less stringent assumptions.The 
Friedman rank test concludes that the populations differs atleast from one of the other populations in 
variation, central tendency and shape. Friedman rank test also concludes if the input data groups have been 
generated from the whole original data set with the medians.
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(12) 

We apply Friedman Test when we cannot assume that the data from each 
of groups are normally distributed populations. Blocks of data are assumed to 
be independent and the underlying variable in the data are mostly numeric in 
nature. When compared to F test, the Friedman rank test makes less stringent 
assumptions.The Friedman rank test concludes that the populations differs 
atleast from one of the other populations in variation, central tendency and 
shape. Friedman rank test also concludes if the input data groups have been 
generated from the whole original data set with the medians. 

 

Figure 4. ROC evaluation for Decision Tree, SVM, KNN, Boosted and Bagged Tree 
Variants for Sparse Super Market Data. 
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represented with the closest boundary [33].
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generated from the whole original data set with the medians.
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Table 8. Friedman Test on Classifier Results. 

N=14 Mean StdD Min Max FrdMR 

SVM 79.95 14.63 56.07 96.09 4.68 

KNN 79.67 15.45 37.13 96.2 3.75 

DecisionStump 64.18 22.93 27.96 95.63 2.21 

J48 81.59 13.2 63.71 99.58 5 

Bagging 79.3 15.43 50 99.52 4.07 

Adaboost 70.2 22.79 27.96 95.4 3.29 

Logitboost 82.02 14.11 50 99.58 5 

Bagging 79.3 15.43 50 99.52 4.07 

Adaboost 70.2 22.79 27.96 95.4 3.29 

Logitboost 82.02 14.11 50 99.58 5 
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Figure 5. Confusion Matrix evaluation for Decision Tree, SVM, KNN, Boosted and 
Bagged Tree Variants for Sparse Super Market Data.  
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Figure 6. Classifier Mean Accuracy   Figure 7. Classifier PRC Area 

 

 

Figure 8. Classifier RMS    Figure 9. Classifier F-Measure 

 

 

 Figure 10. Classifier MAE           Figure 11. Classifier Training Time 

The Classifier results are analysed using Friedman test under the following 
assumptions: One Data set is evaluated on three or more different classifiers. 
Training/Test set is generated as random sample from the population. 
Class/outcome variable is measured at the continuous or ordinal level. Sam-
ples are not necessarily normally distributed. The Wilcoxon signed rank test 
evaluates samples having size $n$ greater than 10 observations and is evalu-
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ated in pair of samples.  Since W statistics is a non-parametric test, the multi-
variate normality is not essential to be assumed for the data. The Wilcoxon 
Signed Rank procedure evaluates under the illusion that the sample holds a 
frequency distribution that is symmetric and is from random population. The 
assumption which is symmetric never promises normality, as it is observed to 
have approximately the equal number of data points below and above the 
median. 

The Wilcoxon technique evaluates a statistic for testing that is matched to 
an expected value. It is evaluated by summation of differences which is 
ranked along the deviation of every variable from a median. The Wilcoxon 
sign test compares the two dependent observations and quantifies the number 
of positive and negative differences.  

Table 9. Wilcoxon Signed Ranks Test for Classifier Comparison. 

 
Comparison Ranking Instances MeanRank SumOfRanks 

J48-
DecisionStump 

Negative Ranks 2 5 10 

Positive Ranks 12 7.92 95 

Ties 0     

Bagging-
DecisionStump 

Negative Ranks 2 4.5 9 

Positive Ranks 11 7.45 82 

Ties 1     

Adaboost-
DecisionStump 

Negative Ranks 3 2.33 7 

Positive Ranks 7 6.86 48 

Ties 4     

Logitboost-
DecisionStump 

Negative Ranks 1 1 1 

Positive Ranks 13 8 104 

Ties 0     

Bagging-J48 
Negative Ranks 8 7.25 58 

Positive Ranks 5 6.6 33 

Ties 1     

Logitboost-J48 
Negative Ranks 6 7.5 45 

Positive Ranks 7 6.57 46 

Ties 1     

Adaboost-
Bagging 

Negative Ranks 8 7.75 62 

Positive Ranks 6 7.17 43 

Ties 0     
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Logitboost-
Bagging 

Negative Ranks 4 4.75 19 

Positive Ranks 7 6.71 47 

Ties 3     

Logitboost-
Adaboost 

Negative Ranks 3 5.33 16 

Positive Ranks 10 7.5 75 

Ties 1     

KNN-SVM 
Negative Ranks 9 6.22 56 

Positive Ranks 5 9.8 49 

Ties 0     

DecisionStump-
SVM 

Negative Ranks 11 7.73 85 

Positive Ranks 2 3 6 

Ties 0     

J48-SVM 
Negative Ranks 4 6 24 

Positive Ranks 8 6.75 54 

Ties 2     

Bagging-SVM 
Negative Ranks 9 6.22 56 

Positive Ranks 4 8.75 35 

Ties 1     

Adaboost-SVM 
Negative Ranks 9 6.56 59 

Positive Ranks 3 6.33 19 

Ties 2     

Logitboost-
SVM 

Negative Ranks 6 5.33 32 

Positive Ranks 7 8.43 59 

Ties 1     

DecisionStump-
KNN 

Negative Ranks 10 8.3 83 

Positive Ranks 4 5.5 22 

Ties 0     

J48-KNN 
Negative Ranks 5 7.6 38 

Positive Ranks 9 7.44 67 

Ties 0     

Bagging-KNN 
Negative Ranks 6 7.33 44 

Positive Ranks 8 7.63 61 

Ties 0     
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Adaboost-KNN 
Negative Ranks 7 8.14 57 

Positive Ranks 6 5.67 34 

Ties 1     

Logitboost-
KNN 

Negative Ranks 5 6.6 33 

Positive Ranks 9 8 72 

Ties 1     

Table 10. Z Score and Significance on Wilcoxon Test 

  KNN-SVM DecStmp-SVM J48-SVM Bagg-SVM 

Z -0.22 -2.76 -1.177 -0.734 

Asy.Sig 0.826 0.006 0.239 0.463 

  Adbst-SVM Logbst-SVM DecStmp-KNN J48-KNN 

Z -1.569 -0.943 -1.915 -0.91 

Asy.Sig 0.117 0.345 0.056 0.363 

  Bagg-KNN Adbst-KNN Logbst-KNN J48-DecStmp 

Z -0.534 -0.804 -1.224 -2.668 

Asy.Sig 0.594 0.422 0.221 0.008 

  Bagg-DecStmp Adbst-DecStmp Logbst-DecStmp Bagg-J48 

Z -2.551 -2.09 -3.233 -0.874 

Asy.Sig 0.011 0.037 0.001 0.382 

  Adbst-J48 Logbst-J48 Logbst-Bagg Logbst-Adbst 

Z -1.977 -0.035 -1.245 -2.062 

Asy.Sig 0.048 0.972 0.213 0.039 
 
The significance is tested using the standard normal distributed z-value as 

shown in table 9 and table 10. The null hypothesis states that the median dif-
ference between pairs of classifier accuracy is zero. The null hypothesis is 
rejected when the significant value is less than 0.05 indicating one of the clas-
sifier outperforms the other. Here from table 11, Asy.Sig value of 0.826 indi-
cates to accept the null hypothesis for KNN and SVM and Asy.Sig value of 
0.006 shows that SVM and Decision Stump has statistically significant differ-
ences comparing the mean accuracy. 

 



45

Vinai George Biju, Prashanth CM
 

 

Conclusion 

This work reviewed to assess various classification based machine learning 
techniques and investigated statistical evaluation measures to compare the 
results. Techniques for comparison and verification of classification results 
are Support Vector Machines, K-Nearest Neighbor, Decision Stump, J48, 
Bagging, Logitboost and Adaboost. MAE, RMS, Precision, Recall, F-
Measure, PRC-Area and Accuracy was considered for comparison of classifi-
ers. Comparison of classifiers was executed using Weka 3 open source ma-
chine learning software and MATLAB 2016. Friedman and Wilcoxon test 
was executed using IBM SPSS and Data sets were taken from UCI machine 
learning repository. The statistical techniques used for validation of results are 
Friedman Test and Wilcoxon Signed Rank Test in non-parametric setting. 
Classification performance using SVM under Linear Kernel and Fine guassian 
framework was found much better than other classifiers for Sparse Supermar-
ket Data. When the classifiers were compared with multiple data sets like Iris, 
Labor, Vote, German Credit, Breast Cancer, Glass and many others, Friedman 
Mean Rank was found high for J48 and LogitBoost. Pair wise comparison 
with statistical significance was evaluated using Wilcoxon Signed Ranks Test. 
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