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Abstract

Parallel magnetic susceptibility temperature dependence of the high-TC super-
conducting parent compound La2CuO4 is calculated in both antiferromagnetic
(AFM) and paramagnetic phase. By making use of the quantum Heisenberg
S = 1

2 three-dimensional AFM model including the in-plane spin anisotropy,
the calculation is performed within the framework of three different theories:
Green’s function theory in random-phase approximation (RPA), linear spin-
wave (LSW) theory and mean-field (MF) theory. The results suggest that at
low temperatures quantum spin fluctuations play an important role, while at
the temperatures above the critical one short-range correlations have a great
impact on the behavior of the system. This leads to the discrepancy between
RPA and MF results, since the later neglects the above phenomena. Further,
LSW theory expectedly agrees with RPA results only at low temperatures
where the magnon interactions are negligible. Comparison to the theoreti-
cal and experimental results quoted in literature confirms that RPA method
presents the most appropriate method among the applied ones, suggesting that
this approach is satisfactory in the case of the parallel magnetic susceptibility,
while in order to reproduce the transversal one, spin-orbit coupling must be
included.

Key words: Quasi-two-dimensional antiferromagnetic copper oxides, magnetic susceptibil-
ity, Green’s function approach

1. Introduction

In the study of the magnetism of CuO2 planes in the quasi-two-dimensional (Q2D)
cuprate antiferromagnets (AFM) important place belongs to the investigation of the mag-
netic susceptibility, which is mostly due to the fact that this property can be experimen-
tally determined. Special interest is directed towards the high-TC superconducting parent
compounds, as for instance La2CuO4 and YBa2Cu3O6, the thorough study of which has
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been actual since the discovery of the high-TC superconductivity [1] in order to elucidate
the underlying physics of the phenomena. Taking into account that the experimental data
for YBa2Cu3O6 are scarce, we focus on the magnetic susceptibility of La2CuO4, which
has been both experimentally [2] and theoretically [3, 4] examined. The attention devoted
to the determination of magnetic susceptibility in this compound is justified since the full
knowledge of this property may shed light on the magnetism of doped CuO2 planes, which
are assumed [2] to possess domain structure at temperatures above the critical one as
well as in the spin glass phase. The theoretical models for this system given in literature
mostly include Dzyaloshinsky-Moriya (DM) interaction, which arises from the spin-orbit
coupling, leading to the weak ferromagnetism within the CuO2 planes. Our goal will
be to employ the model with the in-plane spin anisotropy only, which the authors have
already shown to reproduce correctly many of the experimentally determined magnetic
properties in La2CuO4 [5, 6, 7, 8], such as spin-wave spectrum, magnetization and Néel
temperature. We shall try to reproduce the experimentally obtained results for the paral-
lel magnetic susceptibility, defined as the response of the system to the external magnetic
field acting along the easy-axis of magnetization, using three different approaches, namely
Green’s function (GF) method in the random-phase approximation (RPA), linear spin-
wave (LSW) theory and mean-field (MF) theory. This paper is organized as follows: in
Sec. II we present the magnetic unit cell of La2CuO4 and propose the model Hamiltonian
with the detailed description of the dominant exchange interactions. Sec. III, Sec. IV
and Sec. V are devoted to the detailed calculation of the parallel magnetic susceptibility
using GF method in RPA, LSW theory and MF approximation, respectively. In Sec. VI
we analyze the results obtained within the framework of different theories and compare
them to the results of both theoretical and experimental studies given in literature. Sec.
VII summarizes our results and conclusions, concerning the domain of the applicability of
the model used, as well as its limitations.

2. Model Hamiltonian

Figure 1. Magnetic unit cell of La2CuO4 with only Cu
2+ ions shown. The arrows point in the

spin direction on the given site of the crystal lattice. Dominant intra- and interplane
interaction are presented by dashed lines. The parameters of the unit cell are denoted

by a, b and c.
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The magnetic structure of La2CuO4 is well-known [9, 10]: the spins from the incomplete
d-shells localized on the crystal lattice sites form two magnetic sublattices and interact
via exchange interactions described by integrals J . The neutron diffraction has shown
that the spins within the CuO2 planes are AFM ordered. Magnetic structure of La2CuO4

in the orthorhombic phase together with the dominant exchange interactions is shown in
Fig. 1.

The starting point in our considerations is the effective spin Hamiltonian, referring to
the orthorhombic phase of La2CuO4 in the external magnetic field. In the local coordinate
system, it may be written in the following form:
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Ŝ
−(b)

na+δ
ab
⊥
)− Ŝ
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First term in (1) describes the nearest neighbor in-plane exchange interaction, where nα
denotes the position of the given spin in the sublattice α (α = a, b), while δ1 denotes the
vector connecting the given spin with its nearest neighbors in the plane. Small positive
parameter η introduces the in-plane spin anisotropy which gives rise to the long-range
AFM order within the plane and defines the easy-axis of magnetization along the +z
axis. Second term describes the next- and next-next-nearest neighbor in-plane exchange
interaction, where we assume that J2 = J3 [11]. In spite of the fact that the interplane
exchange interactions are much smaller in magnitude that the intraplane ones, leading
to the Q2D behavior of the cuprate antiferromagnets, the detailed description of the
observed compound requires including the interplanar coupling as well. Therefore, the
next two terms in (1) describe the exchange interaction among the given spin and its
nearest neighbors in the neighboring planes. Therein, we make the assumption that Jaa⊥ =
Jbb⊥ . The interplane interactions of longer range are rightfully neglected. All exchange
interactions are assumed to be AFM in sign. Though, due to the frustration, some of
the couplings are ferromagnetic, as can be seen in Fig. 1. The last term in Hamiltonian
describes the interaction with the external magnetic field H directed along +z axis.

In the above Hamiltonian it is possible to introduce the antisymmetric DM interaction,
resulting from the spin-orbit coupling which causes the CuO2 planes to exhibit the weak
ferromagnetism, i.e. all spins are canted out of the plane by a small angle. This interaction
does not appear in all cuprate antiferromagnets. In Sr2CuO2Cl2, for instance, the weak
ferromagnetic moment is not registered. In our model we left out this phenomena, since our
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earlier results concerning the temperature law of the magnetization reduction [7] suggested
the dominant presence of the gapless excitations leading to the DM interaction gap small
enough to be excluded. The limitations imposed to our model by the negligence of this
interaction will be discussed later.

3. Magnetic susceptibility in random-phase approximation

The GF method used here is based on the temporal Fourier transform of the double-
time temperature spin Green’s functions [12], defined as

hhÂ|B̂iiω =
1

2π

Z +∞

−∞
θ(t− t0)h[Â(t), B̂(t0)]ieiω(t−t0)d(t− t0) . (2)

The initial point in the calculation will be the equations of motion for the Green’s functions

hhŜ+(a)
na

|B̂iiω and hhŜ−(b)
nb

|B̂iiω, obtained by the standard procedure from the Hamiltonian
(1), where B̂ stands for the arbitrary spin operator component and will be specified later
in order to obtain requested Green’s functions. The higher-order Green’s functions that
enter these equations are decoupled using the random-phase approximation [12], which is
defined by the relation

hhŜz
gŜ

+
f |B̂ii

g 6=f−→ hŜzihhŜ+
f |B̂ii . (3)

This decoupling scheme consists in neglecting the correlations between the longitudinal
and transversal spin components at the different lattice sites, whereby the operator Ŝz

g
is replaced by its mean value hŜzi which is site-independent due to the translational
invariance of the lattice. Hence, after performing the spatial Fourier transformation, we
obtain the following system of the algebraic equations for the spatio-temporal Fourier
transforms of the double-time spin Green’s functions (hereafter hhÂ|B̂ii ≡ hhÂ|B̂iik,ω):

(E − �1)hhŜ+(a)|B̂ii− eJ1(k)hhŜ−(b)|B̂ii = ih̄

2π
h[Ŝ+(a), B̂]i ,

eJ2(k)hhŜ+(a)|B̂ii+ (E + �2)hhŜ−(b)|B̂ii = ih̄

2π
h[Ŝ−(b), B̂]i . (4)

Here, we use following notation:

�1/2 = hŜz(b/a)i eJ + hŜz(a/b)i eJ(k)± gµBH , (5)

eJ1/2(k) = hŜz(a/b)i eJ 0(k) , (6)

where

eJ = Jz(g + λab⊥ ) ,eJ(k) = Jz[λ2(γ2(k) + γ3(k))− 2λ2 + λaa⊥ (γ
aa
⊥ (k)− 1)] ,eJ 0(k) = Jz[γ1(k) + λab⊥ γ

ab
⊥ (k)] . (7)

In the relations (7), z is the number of the in-plane nearest neighbors (z = 4), parameters

λ denote the reduced exchange integrals (λ2 = J2/J , λ
ab/aa
⊥ = J

ab/aa
⊥ /J), while quantities
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γ(k) present geometric factors defined as:
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The spin-wave spectrum is determined by making use of the system (4). We form the
homogeneous system of the algebraic linear equations corresponding to (4) (i.e. we take
the right hand side terms of both equations to be zero) and determine the spin-wave
spectrum from the condition that this new system has nontrivial solutions. After certain
algebraic manipulations, we obtain:

E1/2k =
1

2
(σb − σa)( eJ − eJ(k))± 1

2

q
(σa + σb)2( eJ + eJ(k))2 − 4σaσb[ eJ 0(k)]2 + h , (11)

where we introduce the notation hŜz(a/b)i = σa/b and gµBH = h for brevity. Now we
proceed to calculate sublattice magnetizations defined as:

σa/b = hŜz(a/b)i = 1

2
− 1

N

X
k

hŜ−(a/b)Ŝ+(a/b)ik . (12)

In order to obtain the correlation function hŜ+(b)Ŝ−(b)ik, we have to determine the Green’s
function hhŜ−(b)|Ŝ+(b)ii from the system (4). To that end, we take B̂ ≡ Ŝ+(b), which yields

hhŜ−(b)|Ŝ+(b)ii = ih̄

2π
2σb

1

E1k −E2k

Ã
�1 −E1k
E −E1k

−
�1 −E2k
E −E2k

!
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Therefrom, by making use of the spectral theorem, we determine the correlation function
hŜ+(b)Ŝ−(b)ik, which is then inserted into (12) to obtain magnetization of sublattice b in
the following self-consistent form:
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The sublattice a magnetization is determined by the analogous procedure, taking B̂ ≡
Ŝ−(a), which leads to:

σa =
1

2
− 2σa
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X
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!
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To facilitate the further analysis, it is common to express the sublattice magnetizations in
terms of the function cothx, whereafter the expressions (14) and (15) may be written as

σb = −

⎡⎣ 1
N

X
k

µ
B coth

E1k
2θ

+A coth
E2k
2θ

¶⎤⎦−1

(16)
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and

σa =

⎡⎣ 1
N

X
k

µ
A coth

E1k
2θ

+B coth
E2k
2θ

¶⎤⎦−1

, (17)

where we introduce following notation:

A = 1 +
(σa + σb)( eJ + eJ(k))q

(σa + σb)2( eJ + eJ(k))2 − 4σaσb[ eJ 0(k)]2 ,
B = 1− (σa + σb)( eJ + eJ(k))q

(σa + σb)2( eJ + eJ(k))2 − 4σaσb[ eJ 0(k)]2 .
(18)

The expressions (16) and (17) present the basis for the calculation of the parallel magnetic
susceptibility of the analyzed compound within the framework of the GF method.

3.1. Magnetic susceptibility in the paramagnetic phase (θ ≥ θN)

The parallel magnetic susceptibility will be calculated according to the procedure pro-
posed for the antiferromagnetic systems in Ref. [13]. Let us first discuss the behavior of
that property above the Néel temperature, where the long-range antiferromagnetic order
is destroyed due to the thermal fluctuations, i.e. the system passes into its paramagnetic
phase. In the presence of the weak external magnetic field h, the spins of both sublattices
turn in the field direction, leading to

|σa| = |σb| = σ , (σb = −σa) . (19)

In that case, expression (18) reduces to A = B = 1, while the magnon energies (11) read

E1/2k = −σ( eJ − eJ(k)∓ eJ 0(k)) + h . (20)

Therefrom the sublattice magnetization becomes:
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+ coth
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2θ

!⎤⎦−1

(21)

At high temperatures, we retain only the first term in the power series expansion of the
function cothx, yielding:

σ ≈

⎡⎣2θ
N

X
k

2h− 2σ eJ + 2σ eJ(k)
[h− σ( eJ − eJ(k))]2 − σ2[ eJ 0(k)]2

⎤⎦−1

. (22)

Substituting σ = χRPA(θ) · h, previous expression leads to:

χRPA(θ) ≈

⎡⎣4θ
N

X
k

1− χRPA(θ)( eJ − eJ(k))
[1− χRPA(θ)( eJ − eJ(k))]2 − χ2

RPA(θ)[
eJ 0(k)]2

⎤⎦−1

, θ ≥ θN , (23)
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which presents the basis for the further numerical calculations.

3.2. Magnetic susceptibility in the region of long-range AFM order
(θ ≤ θN)

Below the Néel temperature, sublattice magnetizations in the presence of the weak
external magnetic field may be presented as

σa = σ + χRPA · h , σb = σ − χRPA · h , (24)

where σ denotes the magnetization of both sublattices for h = 0. Thus, the quantities
defined by (11) and (18) become

E1/2k = E0(k)h± 1
2
K(k) , (25)

A/B = 1± 2σ[
eJ + eJ(k)]
K(k)

, (26)

where

E0(k) = 1− χRPA[ eJ − eJ(k)] , K(k) = 2σ
q
[ eJ + eJ(k)]2 − [ eJ 0(k)]2 . (27)

Further, the term cothE1/2k/2θ appearing in the expressions for the sublattice magneti-

zations, may be approximated using the identity coth(x±y) = 1±cothx coth y
cothx±coth y and retaining

only the first term in the power series expansion of coth E0(k)
2θ h, which leads to

coth
E1/2 (k)

2θ
≈ ± coth K(k)

4θ
− h

E0(k)

2θ
sinh−2 K(k)

4θ
. (28)

Let us now substitute (16) and (17) together with the notation and approximations intro-
duced in (25)−(28), into the expressions (24). Hence, we obtain

σ + χRPA · h =
1

C
³
1− hC

D

´ ≈ 1

C

µ
1 + h

C

D

¶
, (29)

σ − χRPA · h =
1

C
³
1 + hC

D
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C

µ
1− h

C

D

¶
, (30)

where we use notation

C =
1

N

X
k

4σ[ eJ + eJ(k)]
K(k)

coth
K(k)

4θ
, D =

1

N

X
k
E0(k)

θ
sinh−2 K(k)

4θ
. (31)

Combining (29) and (30) leads to χRPA = D/C2 and σ = C−1. Making use of these two
relations leads to:

χRPA(θ) =
σ2 1

N

P
k sinh

−2 σ
p

[eJ+eJ(k)]2−[eJ 0(k)]2

2θ

θ + σ2 1
N

P
k[
eJ − eJ(k)] sinh−2 σ

p
[eJ+eJ(k)]2−[eJ 0(k)]2

2θ

, θ ≤ θN . (32)
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Knowing that limθ→θ−N
σ = 0 and retaining only the linear term in the power expansion

of sinhx, we obtain:

χRPA(θN ) =
4θN

1
N

P
k

n
[ eJ + eJ(k)]2 − [ eJ 0(k)]2o−1

1 + 4θN
1
N

P
k[
eJ − eJ(k)]n[ eJ + eJ(k)]2 − [ eJ 0(k)]2o−1 , (33)

which presents the parallel magnetic susceptibility at the Néel temperature. The expres-
sion for the calculation of the critical temperature within RPA is given in Ref. [5].

4. Mean-field Theory

We shall now calculate the parallel magnetic susceptibility in La2CuO4 in the approxi-
mation of the molecular (mean) field, in order to understand the way in which this property
is influenced by the short-range spin correlations and quantum spin fluctuations. In the
MF approximation magnon energy is wave-vector independent, wherefrom expressions (5)
and (11) reduce to

�MFA
1/2 = Jz[σMFA

b/a (g + λab⊥ ) + σMFA
a/b (−2λ2 − λaa⊥ )]± h , (34)

EMFA
1/2 =

1

2
(σMFA

b − σMFA
a )Jz[g + λab⊥ + 2λ2 + λaa⊥ ]± (35)

± 1

2
(σMFA

a + σMFA
b )Jz[g + λab⊥ − 2λ2 − λaa⊥ ] + h . (36)

Therefore, expressions (14) and (15) become:

σMFA
a/b = ±1

2
tanh

σMFA
b/a Jz(g + λab⊥ )∓ σMFA

a/b Jz(2λ2 + λaa⊥ ) + h

2θ
. (37)

In the absence of the external magnetic field sublattice magnetizations do not differ and
have value

σMFA =
1

2
tanh

σMFAJz(g + λab⊥ − 2λ2 − λaa⊥ )

2θ
. (38)

Making use of this expression it is simple to calculate θN in the MFA, retaining the linear
term in the expansion od tanhx:

θMFA
N =

1

4
Jz(g + λab⊥ − 2λ2 − λaa⊥ ) . (39)

The analysis of the behavior of magnetic susceptibility in the vicinity of θN may be
performed by the procedure analogous to that used within RPA. Let us first analyze the
paramagnetic phase (θ ≥ θMFA

N ), where

σMFA
a = σMFA , σMFA

b = −σMFA . (40)

Substituting (40) and σMFA = χMFA(θ) · h in the expression (37), and using the power
series expansion of tanhx, we obtain the following expression for the magnetic suscepti-
bility:

χMFA(θ) =
1

4

∙
θ +

1

4
Jz(g + λab⊥ + 2λ2 + λaa⊥ )

¸−1

, θ ≥ θMFA
N . (41)
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(Let us note that expression (23) in the absence of dispersion reduces exactly to (41)).

In the long-range AFM region (θ ≤ θMFA
N ) in the presence of the weak external field

h, sublattice magnetizations are, similarly to RPA expressions, given by:

σMFA
a = σMFA + χMFA · h , σMFA

b = σMFA − χMFA · h . (42)

Inserting (37) into (42), we obtain:

σMFA + χMFAh =
1

2
tanh (F +Gh) , (43)

σMFA − χMFAh = −
1

2
tanh (−F +Gh) , (44)

where F and G are defined as follows:

F =
σMFAJz(g + λab⊥ − 2λ2 − λaa⊥ )

2θ
, G =

1− χMFAJz(g + λab⊥ + 2λ2 + λaa⊥ )

2θ
. (45)

Combining (43) and (44) and using approximation tanh (x+ yh) ≈ tanhx+(y/ cosh2 x)h,
we may easily express the magnetic susceptibility:

χMFA(θ) =

∙
cosh

σMFAJz(g+λab⊥ −2λ2−λaa⊥ )
2θ

¸−2

4θ + Jz(g + λab⊥ + 2λ2 + λaa⊥ )
∙
cosh

σMFAJz(g+λab⊥ −2λ2−λaa⊥ )

2θ

¸−2 , (46)

θ ≤ θMFA
N .

(Similarly to the comment following (41), we note that expression (32) reduces to (47)
within the MFA). Magnetization in the absence of external field (σMFA) appearing in
above relation is given by the self-consistent expression (38), wherefrom it may be de-
termined using the iterative procedure. Finally, the susceptibility at θN can be easily
calculated from (47), leading to:

χMFA(θ
MFA
N ) =

1

4

∙
θMFA
N +

1

4
Jz(g + λab⊥ + 2λ2 + λaa⊥ )

¸−1

. (47)

Since this value follows also from the expression (41) in the limit θ → θMFA+
N , it is obvious

that magnetic susceptibility is continuous function at the Néel temperature.

5. Spin-wave theory

Due to the fact that in the theoretical studies [3, 4] the magnetic susceptibility analysis
is performed also within the framework of LSW theory, we shall do the same in order to
compare our results to the ones quoted there. To that end, we shall start from the Hamil-
tonian (1) and express spin operators as boson ones, using Bloch’s approximation. Hence,
we obtain the Hamiltonian bilinear in Bose operators which we diagonalize by making
use of the well-known ”u-v” Bogoliubov transformation. The initial point in calculating
parallel magnetic susceptibility will be the expressions for the sublattice magnetizations in
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the presence of the weak external magnetic field acting along +z axis. The magnetization
of sublattice a with Na lattice sites, for instance, is determined from the relation

hŜz(a)
LSW i = S − hâ†nâni = S − 1

Na

X
k

hâ†kâki , (48)

where the average hâ†kâki is given by the expression

hâ†kâki =
u2
k

exp[βEA
LSW (k)]− 1

+
v2
k

1− exp[−βEB
LSW (−k)]

. (49)

Here, magnon energies E
A/B
LSW (k) are defined by

E
A/B
LSW (k) = ELSW (k)± h , (50)

where

ELSW (k) =
q
�2LSW (k)− I2

LSW (k) , (51)

while functions uk and vk read

uk =

s
1

2

∙
�LSW (k)

ELSW (k)
+ 1

¸
, vk = −

s
1

2

∙
�LSW (k)

ELSW (k)
− 1

¸
. (52)

In above expressions, we use following notation:

�LSW (k) = JSz
h
(1 + η)− 2λ2 + λ2(γ2(k) + γ3(k)) + λab⊥ − λaa⊥ + λaa⊥ γaa⊥ (k)

i
, (53)

ILSW (k) = JSz(γ1(k) + λab⊥ γ
ab
⊥ (k)) . (54)

Using(49), the magnetization of sublattice a becomes:

hŜz(a)
LSW i = S − 1

2Na

X
k

⎡⎣ �LSW (k)

ELSW (k)

⎛⎝ 1

exp(
EA
LSW (k)

θ )− 1
+

1

1− exp(−EB
LSW (k)

θ )

⎞⎠+
+

⎛⎝ 1

exp(
EA
LSW (k)

θ )− 1
− 1

1− exp(−EB
LSW (k)

θ )

⎞⎠⎤⎦ . (55)

Analogous procedure yields the sublattice b magnetization:

hŜz(b)
LSW i = S − 1

2Nb

X
k

⎡⎣ �LSW (k)

ELSW (k)

⎛⎝ 1

exp(
EB
LSW (k)

θ )− 1
+

1

1− exp(−EA
LSW (k)

θ )

⎞⎠+
+

⎛⎝ 1

exp(
EB
LSW (k)

θ )− 1
− 1

1− exp(−EB
LSWA(k)

θ )

⎞⎠⎤⎦ , (56)

where Na = Nb.
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In the AFM domain in the presence of external magnetic field it is possible to express
the sublattice magnetizations as follows:

hŜz(a)
LSW i = hŜz

LSW i+ χLSW · h , hŜz(b)
LSW i = hŜz

LSW i− χLSW · h , (57)

where hŜz
LSW i presents the magnetization of both sublattices out of magnetic field:

hŜz(a)
LSW i = S − 1

Na

X
k

∙
1

2

�(k)

ELSW (k)
coth

ELSW (k)

2θ
− 1
2

¸
. (58)

The parallel magnetic susceptibility may be easily calculated from (57), using relations
(55) and (56):

χLSW · h = 1

4Na

X
k

Ã
coth

EB
LSW (k)

2θ
− coth E

A
LSW (k)

2θ

!
. (59)

Since we assume that the external field is weak, we may perform the expansion coth (x+ yh)
≈ cothx− (y/ sinh2 x)h in the above expression, leading to the following equation for the
magnetic susceptibility:

χLSW =
1

4θ

1

Na

X
k

sinh2 ELSW (k)

2θ
. (60)

This expression presents the basis for the numerical analysis performed within the frame-
work of LSW theory.

6. Analysis of Results

The numerical analysis of the parallel magnetic susceptibility temperature dependence
in La2CuO4 is first performed within the framework of RPA and MF theory, based upon
expressions (23) and (32), and (41) and (47), respectively. Both approaches employ the
following set of parameters giving excellent agreement with the experimental value of crit-
ical temperature (Ref. [5]), as well as with the magnetization temperature dependence
(Refs.[7, 14]): J = 141meV; λ2 = 0.0942; g = 1 + 10

−3; λab⊥ = 2 · 10−4; λaa⊥ = 10−4. The
analysis within the LSW theory, based upon expression (60), is performed for the parame-
ter set chosen to reproduce correctly the experimental magnetization at low temperatures:
J = 179meV; λ2 = 0.0615; g = 1 + 10−3; λab⊥ = 2 · 10−4; λaa⊥ = 10−4. The results of all
three approaches are shown in Fig. 2. In order to facilitate the comparison, the tem-
perature is renormalized to the corresponding critical temperature. Néel temperature in
RPA agrees excellently with the experimental value T exp

N
∼= 325K, while the MF theory

predicts much higher value TMFA
N ≈ 1330K (expression (39)). Within the LSW theory,

magnetization is expected to vanish at approximately 700K.
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Figure 2. Parallel magnetic susceptibility in La2CuO4 in RPA (full curve), MFA (dotted curve)

and LSW theory (dashed curve).

As can be seen in Fig. 2, in the AFM ordered phase RPA and MFA show close
agreement in the vicinity of the Néel temperature (0.7 ≤ T/TN ≤ 1). Taking into account
that MFA does not include the reduction of the sublattice magnetization caused by the
presence of the low-temperature quantum fluctuations, in the low-temperature region RPA
and MF results are expected to differ. In that region (T/TN ≤ 0.25) LSW theory shows
better agreement with the RPA results. As the temperature grows, the predictions of
the LSW theory deviate from RPA results, suggesting the importance of the magnon
interactions neglected in the LSW theory, but included in RPA in an approximate way.
Above Néel temperature MFA and RPA give essentially different results: in the framework
of MFA the susceptibility decreases abruptly, while RPA proposes slow decrease. This is
the consequence of the fact that within MFA short-range correlations are neglected.

Since we pretend to determine the domain of applicability and limitations of the model
described by Hamiltonian (1), we shall compare our conclusions to those quoted by Tabun-
shchyk et al. [3, 4]. In Ref. [3], the subject of analysis is one isolated CuO2 plane de-
scribed by the model which includes the spin-orbit interaction introduced into the effective
Hamiltonian by the antisymmetric DM interaction and pseudodipolar symmetric interac-
tion. The presence of these interactions gives rise to long-range order even for the 2D
system (which is, in the case of our model, enabled by the in-plane spin anisotropy). The
comparison of our results to those from [3] shows satisfying agreement in the parallel mag-
netic susceptibility behavior, which exhibits strong dependence on quantum fluctuations
and short-range correlations in the wide temperature interval around Néel temperature.
The limitation of our model lies in neglecting the weak ferromagnetism of CuO2 planes,
precluding us from reproducing the anisotropy of the transversal magnetic susceptibility.
Further analysis of our results suggests that the influence of three-dimensionality is ex-
pectedly negligible - the calculation performed for the 2D model gives the results almost
indistinguishable from those obtained in three dimensions. That compares favorably to
the conclusions from [4] where 3D orthorhombic model is examined, showing that the
weak interplanar interactions may be justifiably neglected. In the same Reference, it is
quoted that RPA and MFA give the same value for the parallel susceptibility at the Néel
temperature, which agrees to the prediction of our model (Fig. 2). Finally, it is interesting
to note that in Ref. [4] is also given the study of the approximative 3D tetragonal model,
in the framework of which we have as well examined some properties (magnon spectrum,
Néel temperature) of the given compound [5]. The conclusion cited in [4] according to
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which orthorhombic La2CuO4 can be satisfactorily approximated by the tetragonal model
agrees to the results of our study.

The comparison to the experimentally determined parallel magnetic susceptibility of
the undoped La2CuO4 is enabled by the results of Lavrov et al. [2]. That paper presents
the experimental results for the magnetic susceptibility of the undoped and slightly doped
CuO2 planes. Though it had been expected that this property would be completely
isotropic in doped regime, the measured anisotropy of magnetic susceptibility suggested
that AFM ordered domains survive even in the slightly doped state. For the evaluation of
our model it is important to emphasize the qualitative agreement of the results obtained
within the framework of RPA to the measured parallel susceptibility of undoped La2CuO4.

7. Conclusions

The aim of our study was the theoretical analysis of the magnetic susceptibility in
Q2D cuprate antiferromagnets, especially high-TC superconducting parent compounds,
motivated by the permanent interest for that class of compounds, as well as existing
theoretical and experimental studies. We performed the thorough analysis of the parallel
magnetic susceptibility in undoped La2CuO4, employing the model with the in-plane spin
anisotropy. Three different approaches were implemented: GF method within RPA, LSW
theory and MF approximation. The comparison of RPA and MF results have indicated
that the quantum spin fluctuations and short range correlations play important role in the
behavior of the analyzed property. Results obtained within LSW theory were satisfying
in the low-temperature region only, due to the neglecting of the magnon interactions.
The comparison to experiment confirmed our conclusion that GF method gives the best
description of the parallel susceptibility among the applied approaches.

As far as YBa2Cu3O6 is concerned, the complexity of that compound (four-sublattice
system) cumbers performing the similarly detailed analysis. Our efforts directed towards
obtaining the RPA result met an obstacle already at the point of determination of the
magnon energies in the presence of the external magnetic field. The obtained expressions
were too complicated to render the further analytical analysis possible. Therefore we
performed the MF theory analysis by using the procedure analogous to that invoked for
La2CuO4. The temperature dependence of the parallel magnetic susceptibility resembles
the one obtained for La2CuO4, confirming that CuO2 planes, being the most important
common structural feature of the Q2D cuprate antiferromagnets, play dominant role in
their magnetic behavior.

Back to La2CuO4, we may conclude that while our model gives satisfying predictions
when it appertains to the parallel magnetic susceptibility, it is not capable of reproducing
the transversal one. The limitation of the model lies in neglecting spin-orbit coupling yield-
ing the weak ferromagnetic moment within the CuO2 planes. The analysis based on the
effective Hamiltonian with the DM interaction included, in order to obtain the transversal
magnetic susceptibility in observed compound, may be the subject of our future studies.
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