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Abstract. The present paper mathematically investigates the effect of
temperature dependent viscosity on the onset of instability in thermoha-
line convection problems of Veronis and Stern type configurations, using
linear stability theory. A sufficient condition for the stability of oscillatory
modes for thermohaline configuration is derived. When the compliment of
this sufficient condition is true, the oscillatory motions of neutral or grow-
ing amplitude may exist, and hence the bounds for the complex growth
rate of these neutral or unstable modes are derived, when viscosity of the
fluid is an arbitrary function of temperature. Some general conclusions
for the cases of linear and exponential variations of viscosity are worked
out. The present analysis thus shows that the oscillations in thermoha-
line convection problems can be modulated or arrested by considering the
temperature dependent viscosity of the fluid.
Key words: Thermohaline convection, viscosity variations, oscillatory
motions, complex growth rate, Rayleigh number.

1. Introduction

Double-diffusive convection, with its archetypal case of heat and salt,
generally referred to as Thermohaline convection, has been extensively studied
in the recent past on account of its interesting complexities as well as its direct
relevance in many problems of practical interest. Thermohaline convection has
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matured into a subject possessing fundamental departures from its classical
counterpart, namely; single diffusive convection, and find applications in the
fields of limnology, oceanography, geophysics, astrophysics and chemical engi-
neering etc. The various applications of the problem have aroused the interest
of many research workers, and has led to numerous research papers in various
journals in the recent past. For a broad view of the subject one may be referred
to Huppert & Turner [1], Turner [2] and Brandt and Fernando [3].

Mainly, two types of fundamental configurations have been studied in
the context of the thermohaline convection. First, one by Stern [4], who con-
sidered the configuration wherein the temperature gradient is stabilizing and
the concentration gradient is destabilizing. He showed that a steady motion
or an oscillatory motion of growing amplitude can exist for the configuration
provided the destabilizing concentration gradient or the temperature gradient
is sufficiently large; however, the steady motion is the preferred mode of onset
of instability. On the other hand, Veronis [5] considered the case, when the
temperature gradient is destabilizing and the concentration gradient is stabiliz-
ing one. In Veronis type configuration, the instability can manifests either as a
stationary convection or through oscillations of growing amplitude, however the
oscillatory motions of growing amplitude are the preferred mode of instability.

It is important to note here that the Veronis’ work is restricted to
the case of dynamically free boundaries, whereas Stern’s work assumes the
principle of exchange of stabilities (PES) to be valid. Since for other cases
(realistic cases) of boundary combinations; i.e. when both boundaries are rigid
or any combination of a rigid (on which no slip occurs) and a dynamically
free (on which no tangential stress acts) boundary, the exact solutions of the
eigenvalue problem are not obtainable in a closed form, and hence the values
of critical Rayleigh numbers for these cases of boundary conditions are not
obtainable analytically for the thermohaline convection problems. Banerjee et

al. [6] proposed a noble way of combining the governing differential equation for
thermohaline convection problems and consequently obtaining the bounds for
positive definite integrals by exploiting the coupling between the eigen vectors.
Further, Banerjee et al. [6] and Gupta et al. [7] derived the bounds for the
complex growth rate of an arbitrary oscillatory perturbation for thermohaline
convection problems with constant viscosity.

It is well known fact, that the viscosity of a fluid is one of the properties
which are most sensitive to temperature (cf. Straughan [8]). In the majority
of the cases, viscosity becomes the only property which may have considerable
effect on the heat transfer and the temperature variation and the dependence of
other thermo-physical properties to temperature is often negligible. Torrance &
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Turcotte [9] observed that the viscosity of the liquids decreases with increasing
temperature, while the reverse trend is observed in gases. Heat transfer and
pressure drop characteristics are also affected significantly with the variations
in the fluid viscosity. Therefore, the type of fluid and the range of operating
temperatures are very important and crucial parameters in the study of fluid
dynamics, and in particular in the fields of oceanography, astrophysics etc.

In most of the studies pertaining to thermal/thermohaline convection,
authors have considered the viscosity to be constant. Because of the fact that
by considering the viscosity as variable (or depending upon temperature) in
convective instability problems yields the eigenvalue problems in the forms
of differential equations with variable coefficients, which introduces additional
mathematical complexities. Some authors, including Sherman [10], Trompert
and Hansen [11], Palm [12] and Stengel et al. [13]) have considered the effect
of variable viscosity on the thermal convection problems. Gupta and Kaushal
[14] have also analysed the stability of double-diffusive convection problems
of Veronis and Stern types, by taking into account the variations in viscosity.
However, the results obtained by these authors for the characterization of non-
oscillatory motions for the thermohaline convection problem and the bounds
for the growth rate of a neutral and unstable oscillatory perturbations are
independent of viscosity variation, and hence are of limited utility.

The present paper is motivated by the above discussions and by the
importance of the temperature dependence on viscosity in fluid flow problems.
The main aim of the present analysis is to investigate the effect of tempera-
ture dependent viscosity on the onset of instability in thermohaline convection
problems of Veronis and Stern types. In this paper, we have investigated the
character of the oscillatory modes of the thermohaline convection problem and
the validity of the PES in the problems, using the Pellew and Southwell [15]
method. A sufficient condition for the stability of oscillatory modes in ther-
mohaline configuration is derived. Finally, the bounds for the complex growth
rate of oscillatory motions of neutral or growing amplitude of the thermohaline
convection problems of both Veronis and Stern types are derived, when viscos-
ity is an arbitrary function of temperature. Some general conclusions for the
cases of linear and exponential variations of viscosity are also worked out. The
obtained results are also compared with the earlier results obtained by Baner-
jee et al. [6], Gupta et al. [7] and Gupta and Kaushal [14] for thermohaline
convection problems.
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2. The physical configuration and eigenvalue problem

Following the usual steps of linear stability theory and proceeding anal-
ogously as in the analyses of Gupta et al. [7] and Gupta and Kaushal [14],
one can easily see that the non-dimensional linearized perturbation equations
and the boundary conditions, which govern the initiation of the convection in
thermohaline instability problems, when the viscosity is an arbitrary function
of temperature T , are given by:

(1)
f(D2 − a2)2w −

p

σ
(D2 − a2)w + 2(Df)D(D2 − a2)w

+D2f(D2 + a2)w = RTa
2θ −RSa

2φ,

(2) (D2 − a2 − p)θ = −w,

(3)
(

D2 − a2 −
p

τ

)

φ = −
w

τ
,

together with either of the boundary conditions:

(4) w = 0 = θ = φ = D2w, at z = 0 and z = 1 (Both boundaries free),

(5) w = 0 = θ = φ = Dw, at z = 0 and z = 1 (Both boundaries rigid),

(6) w = 0 = θ = φ = Dw, at z = 0 and w = 0 = θ = φ = D2w, at z = 1,

(Lower boundary rigid and upper boundary dynamically free)

(7) w = 0 = θ = φ = D2w, at z = 0 and w = 0 = θ = φ = Dw, at z = 1,

(Lower boundary dynamically free and upper boundary rigid).
In the foregoing equations: w(z), θ(z) and φ(z), respectively denote

the perturbed velocity, temperature and concentration and are complex valued

functions of vertical coordinate z only; p = pr + ipi is the growth rate; τ =
kS

kT
is the Lewis number with kT as the thermal diffusivity and kS as the mass

diffusivity; RT =
gαβd4

kT v0
is the thermal Rayleigh number, RS =

gβ′d4

kSv0
is the

salinity Rayleigh number; σ is Prandtl number and a2 is the square of the
wave number. Further, with d as the characteristic length, the equations have
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been casted into the above dimensionless forms by using the scale factors;
z

d
.

kd, d
d

dz
,
nd2

kT
, w,

kT θ

βd2
,
v0

kT
,
φkS

β′d2
and

kS

kT
, for vertical distance, wave number,

derivative D ≡
d

dz
, pressure, vertical velocity, temperature, Prandtl number,

concentration and Lewis number, respectively.

Also, in deriving the above equations, the viscosity of the fluid µ =
µ0f(T ) is taken to be temperature dependent; where, µ0 is the viscosity at the
lower boundary and f(T ) is any arbitrary function (which is twice continuously
differentiable) of vertical coordinate z. Also, we have followed the assumptions
of Stengel [13], regarding the small ratio of the viscosities at the top to the
bottom boundaries.

System of equations (1)-(3) together with either of the boundary con-
ditions (4)-(7) constitutes an eigenvalue problem governing the thermohaline
convection problem with temperature dependent viscosity, for R for given val-
ues of other parameters; namely σ, RT , RS , τ and a2. A given state of the
system is stable, neutral or unstable according as pr (real part of the complex
growth rate p) is negative, zero or positive, respectively. Also, pr ≥ 0 and
pi 6= 0, describe the oscillatory motions of neutral or growing amplitude. Fur-
ther, if pr = 0 implies pi = 0 for every wave number a, then the principle of

exchange of stability (PES) is said to be valid, which means that instability
sets in as stationary convection, otherwise we shall have overstability at least,
when instability sets in as certain modes. Furthermore, the eigenvalue problem
represented by equations (1)–(3) and either of the boundary conditions (4)–(7)
describes:

(a) Veronis’ type thermohaline convection (VTHC), when RT > 0 and
RS > 0; and

(b) Stern’s type thermohaline convection (STHC), when RT < 0 and
RS < 0.

3. Mathematical analysis

In this section, we shall mathematically analyze the stability of the
considered problem.

(i) Stability of the oscillatory modes

We shall first investigate the character of the oscillatory modes.

Multiplying both sides of equation (1) by w∗, integrating the resulting
equation by parts a suitable number of times and using the relevant boundary
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conditions (4)–(7) and equations (2)–(3), we have following equation (cf. [14]);

(8)

∫ 1

0
f [|D2w|2 + 2a2|Dw|2 + a4|w|2]dz +

p

σ

∫ 1

0
(|Dw|2 + a2|w|2)dz

+ a2
∫ 1

0
D2f |w|2dz = RTa

2

∫ 1

0
[|Dθ|2 + a2|θ|2]dz

−RSa
2τ

∫ 1

0
[|Dφ|2 + a2|φ|2]dz + a2p∗

[

RT

∫ 1

0
|θ|2dz −RS

∫ 1

0
|φ|2dz

]

.

Comparing the real and imaginary parts of both sides of equation (8), we have:

(9)

∫ 1

0
f |D2w|2dz + 2a2

∫ 1

0
f(|Dw|2 + a4|w|2)dz

+
pr

σ

∫ 1

0
(|Dw|2 + a2|w|2)dz + a2

∫ 1

0
D2f |w|2dz

−RTa
2

∫ 1

0
[|Dθ|2 + a2|θ|2]dz +RSa

2

∫ 1

0
τ [|Dφ|2 + a2|φ|2]dz

+ a2pr

(

RT

∫ 1

0

[

|θ|2dz −RS

∫ 1

0
|φ|2dz

]

dz

)

= 0

and

(10) pi

[
∫ 1

0
(|Dw|2 + a2|w|2)dz +RTa

2σ

∫ 1

0
|θ|2dz −RSa

2σ

∫ 1

0
|φ|2dz

]

= 0

It is clear from equation (10), that pi may or may not be zero, which in
view of above discussions means that PES in general is not valid for both VTHC
and STHC problems and thus, instability can also arise through oscillations.

Let us suppose, that pi 6= 0, i.e. PES is not valid. This fact means
that the instability is through oscillation. So, cancelling pi throughout from
equation (10), we can have:

∫ 1

0
(|Dw|2 + a2|w|2)dz +RTa

2σ

∫ 1

0
|θ|2dz −RSa

2σ

∫ 1

0
|φ|2dz = 0,

which yields, that:

(11) RSa
2

∫ 1

0
|φ|2dz >

1

σ

∫ 1

0
(|Dw|2 + a2|w|2)dz.
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Since w, θ and φ satisfy the boundary conditions:

w(0) = 0 = w(1); θ(0) = 0 = θ(1); and φ(0) = 0 = φ(1),

therefore, upon using the Rayleigh-Ritz inequality [16], we have:

(12)

∫ 1

0
|Dw|2dz ≥ π2

∫ 1

0
|w|2dz,

(13)

∫ 1

0
|Dθ|2dz ≥ π2

∫ 1

0
|θ|2dz,

(14)

∫ 1

0
|Dφ|2dz ≥ π2

∫ 1

0
|φ|2dz.

Further:

(15)

∫ 1

0
(Dθ|2 + a2|θ|2)dz =

∣

∣

∣

∣

−

∫ 1

0
θ∗(D2 − a2)θdz

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ 1

0
θ∗(D2 − a2)θdz

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ 1

0
|θ||(D2 − a2)θ|dz

∣

∣

∣

∣

≤

[
∫ 1

0
|θ|2dz

]

1

2
[
∫ 1

0
|(D2 − a2)θ|2dz

]

1

2

,

(Using Schwartz Inequality).
Also,

(16)

∫ 1

0
(|Dθ|2)dz =

∣

∣

∣

∣

−

∫ 1

0
θ∗D2θdz

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ 1

0
θ∗D2θdz

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ 1

0
|θ|2|D2θ|2dz

∣

∣

∣

∣

≤

[
∫ 1

0
|θ|2dz

]

1

2
[
∫ 1

0
|D2θ|2dz

]

1

2

,

(Using Schwartz Inequality).
Using inequality (13), inequality (16) implies that:

(17)

∫ 1

0
|D2θ|2dz ≥ π4

∫ 1

0
|θ|2dz.

Also, proceeding analogously as in the derivation of the inequality (17),
we can have:

(18)

∫ 1

0
|D2w|2dz ≥ π4

∫ 1

0
|w|2dz.
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Combining inequalities (12) and (18), we can get:

(19)

∫ 1

0
f [|D2w|2 + 2a2|Dw|2 + a4|w|2]dz ≥ fmin(π

2 + a2)2
∫ 1

0
|w|2dz,

where, fmin is the minimum value of f(z) in the closed interval [0, 1].

Further, multiplying equation (2) by its complex conjugate and inte-
grating the various terms on the left hand side of the resulting equation by
parts for an appropriate number of times and making use of boundary condi-
tions: θ(0) = θ(1) = 0, we get:

(20)

∫ 1

0
[|D2θ|2 + 2a2|Dθ|2 + a4|θ|2]dz + 2pr

∫ 1

0
(|Dθ|2 + a2|θ|2)

+ |p|2
∫ 1

0
|θ|2dz =

∫ 1

0
|w|2dz.

If permissible, let pr ≥ 0. In view of this fact, equation (20) implies
that:

(21)

∫ 1

0
|(D2 − a2)θ|2dz =

∫ 1

0
[|D2θ|2 + 2a|Dθ|2 + a4|θ|2]dz <

∫ 1

0
|w|2dz.

Further, combining inequalities (13) and (17), we have:

(22)

∫ 1

0
[|D2θ|2 + 2a2|Dθ|2 + a4|θ|2]dz ≥ (π2 + a2)2

∫ 1

0
|θ|2dz.

Inequalities (15), upon using inequalities (21) and (22), yields:

(23)

∫ 1

0
[|Dθ|2 + a2|θ|2dz <

1

(π2 + a2)

∫ 1

0
|w|2dz.

We can also derive the following inequalities analogous to the derivation
of inequality (22):

∫ 1

0
[|Dw|2 + a2|w|2]dz ≥ (π2 + a2)

∫ 1

0
|w|2dz,(24)

∫ 1

0
[|Dφ|2 + a2|φ|2]dz ≥ (π2 + a2)

∫ 1

0
|φ|2dz.(25)
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Now, multiplying equation (10) by pr and adding the resulting equation
to equation (9), we have:

(26)

∫ 1

0
f [|D2w|2 + 2a2|Dw|2 + a4|w|2]dz + 2

pr

σ

∫ 1

0
(|Dw|2 + a2|w|2)dz

−RTa
2

∫ 1

0
[|Dθ|2 + a2|θ|2]dz + a2

∫ 1

0
D2f |w|2dz

+RSa
2τ

∫ 1

0
[|Dφ|2 + a2|φ|2]dz = 0.

For D2f ≥ 0 (double derivative of the function f greater than or equal to zero),
equation (26) with pr ≥ 0, yields:

(27)

∫ 1

0
f [|D2w|2 + 2a2|Dw|2 + a4|w|2]dz +RSa

2τ

∫ 1

0
[|Dφ|2 + a2|φ|2]dz

< RTa
2

∫ 1

0
[|Dθ|2 + a2|θ|2]dz.

Also, inequality (11), upon using inequality (25), yields:

(28) RSa
2

∫ 1

0
|φ|2dz >

(π2 + a2)

σ

∫ 1

0
|w|2dz.

Now using inequalities (19), (23) and (28) in inequality (27), we have:

(29)
(π2 + a2)3

a2

(

fmin +
τ

σ

)

∫ 1

0
|w|2dz < RT

∫ 1

0
|w|2dz.

Since, minimum value of
(π2 + a2)3

a2
with respect to a2 is

27π4

4
, there-

fore inequality (29) yields:

[

27π4

4

(

fmin +
τ

σ

)

−RT

]
∫ 1

0
|w|2dz < 0.

From the above inequality, it is clear that if RT <
27π4

4

(

fmin +
τ

σ

)

,

we have a contradiction. Hence, we must have pr < 0.
The above result clearly implies that the oscillatory modes of the sys-

tem are stable, when D2f ≥ 0 and RT <
27π4

4

(

fmin +
τ

σ

)

. Further, pro-

ceeding exactly as in the above analysis, replacing RT and Rs, respectively
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with −|RT | and −|Rs| and following the analogous steps, we have a suffi-
cient condition for the stability of the oscillatory modes for STHC problem

as: |RS | <
27π4τ

4

(

fmin +
1

σ

)

with D2f ≥ 0.

It is remarkable to note, that when we consider the compliment of the
above sufficient condition for the stability of the oscillatory motions, i.e. when

RT ≥
27π4

4

(

fmin +
τ

σ

)

, the oscillatory modes of growing amplitude may exist.

Hence, it becomes important to prescribe the bounds for the growth rate of
these motions.

In the following analysis, we have derived such bounds, which arrest the
complex growth rate of the arbitrary neutral or unstable (pr ≥ 0) oscillatory
motions (pi 6= 0).

(ii) Bounds for complex growth rate for VTHC

Taking pr ≥ 0 in equation (21) and using inequality (22) in the resulting
inequality, we get the following inequality:

(30)

∫ 1

0
|θ|2dz <

1

(π2 + a2)2 + |p|2

∫ 1

0
|w|2dz.

Now, using inequalities (30) and (21) in inequality (15), we have:

(31)

∫ 1

0
[|Dθ|2 + a2|θ|2]dz <

1

(π2 + a2)
[

1 + |p|2

(π2+a2)2

]
1

2

∫ 1

0
|w|2dz.

So, using inequalities (19), (28) and (31), inequality (27) yields the
following inequality:

(32)

(

π2 + a2

a2

)3
(

fmin +
τ

σ

)

∫ 1

0
|w|2dz <

RT
[

1 + |p|2

(π2+a2)2

]
1

2

∫ 1

0
|w|2dz.

Since, minimum value of
(π2 + a2)3

a2
with respect to a2 is

27π4

4
, there-

fore inequality (32) yields:

(33)







27π4

4

(

fmin +
τ

σ

)

−
RT

[

1 + |p|2

(π2+a2)2

]
1

2







∫ 1

0
|w|2dz < 0.
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Inequality (33), under the condition RT ≥
27π4

4

(

fmin +
τ

σ

)

clearly

implies that:

(34) |p| < (π2 + a2)
√

(Q2 − 1),

where, Q =
4σRT

27π4(τ + σ.fmin)
.

Also, from inequality (32), we can have:

(35) (π2 + a2)

(

π2 + a2

a2

)2
(

fmin +
τ

σ

)

< RT .

Because, minimum value of
(π2 + a2)2

a2
with respect to a2 is 4π2, there-

fore inequality (35) yields:

(36) (π2 + a2) <
1

4π2

(

σRT

τ + σfmin

)

.

Now, using inequality (36) in inequality (34), we get:

|p| <
1

4π2

(

σRT

τ + σfmin

)

√

(Q2 − 1).

The above result can be stated in the following theorem:

Theorem 1. If (p,w, θ, φ), p = pr + ipi, pr ≥ 0, pi 6= 0, RT > 0 and

RS > 0, D2f ≥ 0, RT >
27π4

4

(

fmin +
τ

σ

)

is a solution of equations (1)–(3)

together with either of boundary conditions (4)–(7), then:

|p| <
σRT

4π2(τ + σfmin)

√

(Q2 − 1),

where: Q =
4σRT

27π4(τ + σ.fmin)
.

In the terminology of the hydrodynamic stability theory, the above
result can be stated as:

“The complex growth rate p = pr+ipi of an arbitrary oscillatory (pi 6= 0)
perturbation of growing amplitude (pr ≥ 0), in a Veronis’ Type thermohaline
convection with temperature dependent viscosity when D2f ≥ 0, lies inside a
semicircle in the right half of the prpi-plane, whose centre is at the origin and

whose radius is
1

4π2

(

σRT

τ + σfmin

)

√

(Q2 − 1). Further, the result is uniformly

valid for the all combinations of rigid and dynamically free boundary conditions.
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(iii) Bounds for complex growth rate for STHC
Following the analysis adopted in the derivation of the results for the

case of VTHC problem, analogous results can be easily derived for the case
of STHC problem, just by replacing RT and RS with −|RT | and −|RS | and
following the analogous steps. Thus, the bound for the complex growth rate
for STHC with temperature dependent viscosity is given by:

Theorem 2. If (p,w, θ, φ), p = pr + ipi, pr ≥ 0, pi 6= 0, D2f ≥ 0,

RT < 0 and RS < 0, |RS | >
27π4τ

4

(

fmin +
1

σ

)

is a solution of equations

(1)–(3) together with either of boundary conditions (4)–(7), then:

|p| <
σ|RS |

4π2(1 + σfmin)

√

(Q̃2 − 1),

where: Q̃ =
4σ|RS |

27π4τ(1 + σ.fmin)
.

The essential contents of the Theorem 2, from the point of view of
hydrodynamic stability theory are similar to those of Theorem 1and the remarks
drawn for the case of VTHC are analogously valid for the present case of STHC,
also.

4. Conclusion and discussion

The above analysis establishes that the oscillatory modes of growing
amplitude for Veronis’ Type thermohaline convection problem with variable vis-

cosity are not allowed, if the thermal Rayleigh number RT <
27π4

4

(

fmin +
τ

σ

)

together with the second derivative of the viscosity function is positive or zero
(D2f ≥ 0) which clearly shows that the stability of the oscillatory motions
depends upon the viscosity of the fluid.

In particular, when the viscosity is varying linearly or exponentially,
the condition D2f ≥ 0 on viscosity is automatically satisfied and fmin = 1, for
both cases of viscosity variations. In view of the above facts, the above sufficient

condition yields RT <
27π4

4

(

1 +
τ

σ

)

, which is the same condition as obtained

by Gupta et al. [7] for Veronis’ Type thermohaline convection problem with
constant viscosity. Thus, from the present analysis, we observe that whether
the viscosity is constant or varying linearly and exponentially, the sufficient

condition for the stability of oscillatory modes is RT <
27π4

4

(

1 +
τ

σ

)

. The

obtained result thus generalizes the results of Gupta et. al. [7] to the case of
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viscosity variation. Also, the above remarks for VTHC are also analogously
valid for the stability of the oscillatory modes for STHC problem also.

As stated earlier, if the compliment of the above conditions for the
stability of the oscillatory modes of VTHC and STHC problems are true, we
may have instability through oscillations. Hence, Theorems 1 and 2 provides
the bounds for the growth of complex rates of oscillatory motions of neutral or
growing amplitude. We observed from Theorem 1 that the radius of the growth
rate for these oscillatory perturbations clearly depends upon the viscosity of
the fluid and hence by modulating the viscosity through temperature, one can
control the growth rate. Theorem 1 also yields that when Q < 1, i.e. RT <
27π4

4

(

fmin +
τ

σ

)

, the oscillatory motions of growing amplitude are not allowed,

which is the same condition as derived above. Further, when the viscosity is
varying linearly or exponentially, we have D2f ≥ 0 and fmin = 1, the bound
obtained in Theorem 1 reduces to

|p| <
σRT

4π2(τ + σ)

√

Q2 − 1, where Q =
4σRT

27π4(τ + σ)
,

which is the same bound as obtained by Gupta et al. [7] for VTHC problem
with constant viscosity. Thus, the above remarks clearly establish the generality
of the results derived herein with temperature dependent viscosity.

Further, from the expression given in Theorem 1, we can see that the
radius of the arbitrary oscillatory perturbation decreases as the minimum value
of f(T ) increases, which means that more the viscosity of the fluid smaller is
the region for the growth rate of oscillatory perturbation. Hence, we concluded
that by modulating the viscosity of the fluid with temperature, one can control
the oscillation in thermohaline convection.

The essential contents of Theorem 2 from the point of view of hydrody-
namic stability theory are similar to those of Theorem 1. Hence, the conclusions
and remarks drawn for the case of VTHC are analogously valid for the present
case of STHC. Further, the above derived results are uniformly valid for the
quite general nature of boundaries and hence are of wider applicability.
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