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Abstract. During recent years, the interest in the phenomena of chaos
in gyroscopic systems has been increasing. It is well-known, that depend-
ing on the speed of rotation, a gyroscopic system may lose or gain stability.
Despite the overwhelming number of studies reporting the occurrence of
various chaotic structures, little is known yet about the construction de-
tails and the generality of the underlying bifurcation scenarios that give
rise to such chaotic (complex) behaviour.

In this paper, we report a detailed investigation of the abundance
of regular and chaotic behaviour for rigid body (gyrostat) motion. The
model contains 6 parameters that may be tuned to produce rich dynamical
scenarios. The results confirm that homoclinic and heteroclinic structures
with two fixed points from saddle-focus type occur and the emergence of
Shilnikov chaos takes place. Finally, we find new results concerning the
system’s evolution and bifurcation scenarios for its routes to chaos.
Key words: Dynamical systems, chaos, gyrostat, homoclinic and hete-
roclinic orbits.

1. Introduction

Modelling is a powerful tool in the processes simulation in physics and
technologies, dealing with different time and spatial scales, and in the mechan-

*Corresponding author e-mail: S.Nikolov@imbm.bas.bg

This paper is funded by the grant No 1616/22.04.2014 of the University of Transport “T.
Kableshkov” Sofia, Bulgaria.



16 Svetoslav Nikolov, Nataliya Nedkova

ical characterization of system parameters. It is also effective in the interpre-
tation and design of experiments, as well as in the new effects and phenomena
prediction. It is clear, that modelling will play an increasing role in improv-
ing our understanding of the physical processes in mechanical systems, under
normal and abnormal conditions.

In an array of great discoveries in the twentieth century, three of them
certainly belong to physics: 1) the theory of relativity of Albert Einstein (with-
out ignoring the great merit of Henri Poincaré); 2) quantum mechanics, associ-
ated with a large number of scientists from different countries and 3) chaos the-
ory, associated mostly with the name of the American theorist Edward Lorenz,
a meteorologist. Again, Henri Poincaré has a contribution to its development,
and later many scholars, the list of whose names cannot fit into several dozen
pages. It will be only mentioned that the first to use the word chaos in its mod-
ern understanding in science are Li and Yorke in 1975 [1], and that the authors
of the concept of the strange attractor are Ruelle and Takens in 1971 [2].

There has been a large amount of recent interest in the investigation of
gyroscope dynamics. The gyroscope has attributes of great utility to naviga-
tional and aeronautical engineering, biology, optics, etc. [3-8]. Different types
of gyroscopes (with linear or nonlinear damping, fluid, etc.) are investigated
for predicting dynamic responses such as regular and chaotic motions [9–11].

Dissipative systems are a special class of dynamical systems. In general,
dissipative mechanical systems in more than two dimensions have bounded and
unbounded orbits, depending on the energy. The bounded trajectories of these
systems do not converge to an equilibrium point or to a periodic or quasi-
periodic orbit. In this case, the flow is essentially aperiodic. A dynamical
system is dissipative, if its phase volume contracts continuously, i.e. Di < 0
(i = 1, . . . , n). Only dissipative dynamical systems have attractors [12, 13].

Attractors are the adequate mathematical (geometrical) representations
of time order and chaos that can be: stable equilibrium, stable periodic motions
(auto-waves) or strange attractors. Mathematical representations of spatial
order and chaos are saddle equilibrium, saddle periodic movements or complex
saddle invariant sets.

An important step towards the understanding of the global dynamics
of a system of differential equations is the analysis of the existence of homo-
clinic/heteroclinic orbits (cycles). It is well-known, that a heteroclinic cycle is
a sequence of trajectories connecting a set of fixed points in a topological circle.
A classical heteroclinic cycle is a loop that consists of saddle equilibrium states
connected to one another by their separatrices. The special case of a cycle
consisting of one trajectory and one fixed point is usually called a homoclinic
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trajectory [14, 15].

A homoclinic trajectory f(x, t), (or a homoclinic (separatrix) loop) is
such that the ‘inset’ to a fixed point of an attractor, x0, is the same as the
‘outset’ from the same point. It obeys the rule that f(x, t) → x0 for t → ∞,
t → −∞ [16]. According to Peixoto’s theorem [17, 18], homoclinic bifurcations
are structurally unstable and are therefore, destroyed by small perturbations.
Consequently, they are more difficult to identify than a local bifurcation, be-
cause knowledge of the global properties of the phase space trajectories is re-
quired. A systematic characterization of homoclinicity around a saddle-focus
equilibrium was provided by Shilnikov [19–21]. In this scenario, reinjection oc-
curs along a well-defined vector associated with a real system eigenvalues, with
ejection from the vicinity of the equilibrium, subsequently effected on a spiral
path located on a transverse plane. A necessary condition for this mechanism

is that the saddle-focus index is δ =
∣

∣

∣Re
(

χ2/χ1

)∣

∣

∣ < 1, where χ1 and χ2 are the

leading eigenvalues. Here, we note that χ1 is determining the rate of approach-
ing and χ2 is determining the rate of leaving the stable point. If thus Shilnikov
condition is satisfied, an infinite number of nonperiodic trajectories coexist in
the vicinity of a homoclinic trajectory bi-asymptotic to the saddle-focus.

A nice example is the Lorenz system [22], which has an important his-
torical relevance in the development of chaos theory. Now, this system is con-
sidered as a paradigmatic example of a chaotic system [23]. This system is
adaptive, if ∇

.
xi takes both positive and negative values. Rigid bodies are

bodies that cannot deform and change their shape, but they can translate and
rotate. In [24, 25], the authors remark that the Lorenz system admits a purely
mechanical model of two rigid bodies – lifting and lifted axi-symmetric rotors.
The system is firstly suggested by Gluhovsky in [26] and has the following prop-
erty: when the rotor moves relative to the lifting body, then the distribution
mass remains unaltered in space. Thus, the system tensor is constant and such
a system is called a gyrostat (see Fig. 1). Further, it is assumed that its center
of mass is fixed, and that the ellipsoid of inertia has the form of a rotation
ellipsoid.

In case of small angular velocities, the motion of the system can be
presented from the following differential equation [9, 27]:

(1)
.

M = M ×AM +BM,

where M is the vector of kinematical moment about the coordinate system of
the rigid body, A = I−1 = diag(a1, a2, a3) (where I is the inertial tensor) and
B is a constant matrix. For the dissipative case, i.e. div < 0, the condition
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Fig. 1. Two bodies – lifting and lifted axi-symmetric rotor

TrB < 0 is valid. In [28], it is shown for specific values of system parameters,
that two attractors have place. It is well known, that system (1) has two
particular cases: (i) those of Greenhill and (ii) Klein & Sommerfeld [29]. The
trajectories lie in integral surfaces in these two cases. For some complicated
cases, system (1) has two strange attractors.

According to Fig. 1, the system (1) can be written in the form:

(2)

.

M1 = c1M1 +M2 + c2M2M3,
.

M2 = −M1 − c3M2 + c4M1M3,
.

M3 = c5M3 − c6M1M2,

where M1, M2 and M3 are the projections of the instantaneous angular velocity
onto the X-, Y - and Z-axes (see Fig. 1), and c1 ÷ c6 are parameters (in form
of algebraic complexes), given in [24, 28].

In general, the investigation of such model would start with the com-
putation of steady states. The equilibrium (steady state) points of the system
(2) are found by equating the right-hand sides of (2) to zero. Thus, it is easy
to see that equilibrium points of the system (2) are:

(3) O1 : M1 = M2 = M3 = 0, first fixed point

(4) O2,3,4,5 :

M1 =
1

c1
M 2
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second, third, fourth and fifth fixed points
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For the reason that (c2+ c4)
2+4c1c2c3(c1c2c3+ c4) > 0, the system (2)

has five real fixed points – see Fig. 2 a, b.

(a)
(b)

O4

O5

O2
O3

O1

O3

O2

O4

O5

O1

Fig. 2. (a) Fixed points of system (2) in M1M2M3 coordinates as a function of c1;
(b) fixed points of system (2) in M1M2M3 coordinates as a function of c5

The system (2) enjoys the natural symmetry (M1,M2,M3) → (−M1,

−M2,M3). The M3-axis is invariant. All trajectories, which start on the M3-
axis remain on it.

The divergence of the flow (2) is:

(5) D3 =
∂

.

M 1

∂M1
+

∂
.

M 2

∂M2
+

∂
.

M3

∂M3
= c5 − (c1 + c3) .

The system (2) is dissipative, when D3 < 0, i.e. c5 < c1 + c3. It
means, that a volume element D3(t0) is contracted by the flow into a volume
D3(t) = D3(t0) × e−(c1+c3−c5)t. That is, as t → +∞, each volume containing
the system trajectories shrinks to zero at an exponential rate (independently
of the system states) D3 = −(c1 + c3 − c5). Hence, all system trajectories
will be confined to a specific subset of zero volume. For example, in 1981
Leipnik and Newton [28] found that for c5 < 0.8, the system is dissipative and
all volumes in the phase space must contract uniformly, even though cross-
sectional and all trajectories except those trapped at the rest points, diverge to
infinity. Simulations suggest that for c5 = 0.175 the system (2) has two strange
attractors.

The paper is further organized as follows: in Section 2, 3 and 4 we
present analytical and numerical results, concerning the system (2) behaviour
for different values of bifurcation (control) parameters c1 and c5. In Section 5
we discuss and summarize our results.
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2. Theoretical analysis

In this section, we investigate the system (2), which presents an au-
tonomous nonlinear 3D dynamical model.

Generally, in order to determine the character of fixed points (Eqs. (3)
and (4)), we make the following substitutions into (2):

(6) M1 = M 1 + w1, M2 = M2 + w2, M3 = M3 + w3.

Hence, after some transformations, the system (2) has the form:

(7)

.
w1 = −c1w1 + b1w2 + b2w3 + c2w2w3,
.
w2 = −b3w1 − c3w2 + b4w3 + c4w1w3,
.
w3 = −b5w1 − b6w2 + c5w3 − c6w1w2,

where

(8)
b1 = 1 + c2M3, b2 = c2M2, b3 = 1− c4M3,

b4 = c4M1, b5 = c6M2, b6 = c6M1.

According to [30], the Routh-Hurwitz conditions for stability of fixed
points (3) and (4), can be written in the form:

(9)

p = c1 + c3 − c5 > 0,
q = c1 (c3 − c5)− c3c5 + b1b3 + b2b5 + b4b6 > 0,
r = − [c5 (c1c3 + b1b3)− b5 (b1b4 + b2c3) + b6 (b2b3 − b4c1)] > 0,
R = pq − r = (c3 − c5) [c1 (c1 + c3 − c5)− c3c5 + b4b6] +
b1b3 (c1 + c3) + b2b5 (c1 − c5)− b1b4b5 + b2b3b6 > 0.

Here, the notations p, q, r and R are taken from [30]. The characteristic
equation of the system (7) (which is equivalent to system (2)), can be written
as:

(10) χ3 + pχ2 + qχ+ r = 0.

Here, we note that, the five fixed points at bifurcation parameters c1
and/or c5 are always from saddle-focus type (and not from saddle type as is
noted in [39] and many another papers) – negative real eigenvalue and complex
eigenvalues with positive real part (unstable focus) (see Fig. 3 – left panel), and
positive real eigenvalue and complex eigenvalues with negative real part (stable
focus) (see Fig. 3 – right panel). These fixed points can be included in homo-
clinic and heteroclinic structures with two, three, four and five equilibriums of
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Fig. 3. Fixed points from saddle-focus type of system (2) with: unstable focus
(complex eigenvalues with positive real part) – left panel and stable focus (complex

eigenvalues with negative real part) – right panel

Shilnikov type, where their invariant manifolds W s and W u, are meeting each
other in a most intricate manner.

For c1 = c3 = 0.4, c2 = 10, c4 = c6 = 5 and c5 = 0.3 the equilibriums
and their eigenvalues are given by:

O1 = (0, 0, 0), then (χ1, χ2, χ3) = (0.3,−0.4 ± i);
O2 = (−0.0413, 0.1602,−0.1103), then (χ1, χ2, χ3) = (−0.8, 0.15 ± 1.1419i);
O3 = (0.0413,−0.1602,−0.1103), then (χ1, χ2, χ3) = (−0.8, 0.15 ± 1.1419i);
O4 = (0.3129, 0.0403, 0.2103), then (χ1, χ2, χ3) = (−0.8, 0.15 ± 1.5831i);
O5 = (−0.3129,−0.0403, 0.2103), then (χ1, χ2, χ3) = (−0.8, 0.15 ± 1.5831i);

A heteroclinic cycle is one of the common scenarios of the formation or
death of a limit cycle, when the limit cycle emanates from, or approaches the
heteroclinic cycle as a singular limit, respectively [15, 31]. There are known
cases in which a unique limit cycle is born and certain criteria can be used to
determine if this cycle must be stable or unstable. In our case here, the known
analytical results are not applicable [32, 33], and we are forced to use numerical
simulations and specific features of our system. Hence, we find new results for
its bifurcation behaviour and routes to chaos.

3. Shilnikov criteria for chaos

In Section 2, we obtained that system (2) has fixed points from saddle-
focus type. Therefore, in this case the Shilnikov theory for analyzing of bifur-
cations of homoclinic/heterclinic orbits and existence of chaos in flow in R3,
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can be used [19, 34-36]. Below, we explain shortly the general results obtained
by Shilnikov.

We focus our considerations on bifurcations from homoclinic and hetero-
clinic orbits between saddle-foci equilibrium in a three dimensional autonomous
system:

(11)
.
x =

dx

dt
= f (x, µ) , x ∈ R3, µ ∈ R1,

where the nonlinearity f is sufficiently smooth for the results to hold. The
Shilnikov criteria for saddle-focus equilibrium are summarized in the following
theorem [36-38]:

Theorem. Suppose that system (11) has at µ = 0 a saddle-focus equi-

librium point x0 = 0 with eigenvalues χ1(0) > 0 > Reχ2,3(0) and a homoclinic

orbit Γ0. Assume the following genericity conditions:

(H1) σ0 = χ1(0) + Reχ2,3(0) < 0;

(H2) χ2(0) 6= χ3(0);

(H3) β′(0) 6= 0, where β(µ) is the split function;

(H4) σ0 = χ1(0) +Reχ2,3(0) > 0.

Hence, (i) if the conditions (H1 −H3) are valid, then system (11) has a unique

and stable limit cycle Lβ in a neighborhood U0 of Γ0 ∪ x0 for all sufficiently

small β > 0; (ii) if the conditions H2 and H4 are valid, then system (11) has

an infinite number of saddle limit cycle in a neighborhood U0 of Γ0 ∪ x0 for all

sufficiently small |β| .

Remarks (about part (i) of Theorem):

1. For all sufficiently smallβ ≤ 0, the system (11) has no periodic orbits in
U0 and the unstable manifold W u (x0) tends to the cycle Lβ;

2. For β = 0, the cycle period tends to infinity.

Remarks (about part (ii) of Theorem):

1. For β taking positive or negative values, an infinite number of bifurcations
occur, as some of these bifurcations are related to a “basic” limit cycle;

2. The “basic” cycle disappears and appears via tangent/fold bifurcation
infinity many times. Moreover, the cycle also exhibits an infinite number
of period-doubling bifurcations;
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3. The “basic” cycle (as well as the secondary cycles generated by period-
doublings) can be stable or repelling, depending on the sign of the diver-
gence of (11) at the saddle-focus, i. e.:

(12) σ1 = (div f) (x0, 0) = χ1 + 2Reχ2,3.

If σ1 < 0, the “basic” cycle near the bifurcation is stable - there are only
short intervals of β, within which it is stable. If σ1 > 0, there are intervals
where the “basic” cycle is absolutely unstable (repelling);

4. For βi → 0 (βi > 0), the system (11) has double homoclinic orbits with
different (increasing) number of rotations near the saddle-focus.

Initially it was assumed that n− = dimW s = 2 and n+ = dimW u = 1.
We have to reverse the direction of time, in order to apply the above results in
the opposite case - n− = 1, n+ = 2, Hence, the following substitutions are
valid: χj → −χj , σi → −σi and “stable” → “repelling”.

4. Numerical analysis

In the previous two sections, we obtained and showed some analytical
results, that we shall use in our numerical analysis in the system (2). According
to [28, 39], the corresponding values of the dimensionless parameters c1 ÷ c6
are:

(13)
c1 ∈ [0.4, 0.9], c2 = 10, c3 ∈ [0.4, 0.9],
c4 = 5, c5 ∈ [0, 0.9], c6 = 5.

In order to compare the predictions with the numerical results, the gov-
erning equations of system (2) were solved numerically using MATLAB [40].
The initial conditions for all simulations are (0.349, 0,−0.16) or (0.349, 0,−0.18).

Figure 4 shows the bifurcation diagram for system (2): values of M2

coordinate, (M2)n are plotted against c5 regarded as a continuously varying
bifurcation (control) parameter. We see that at c5 ∈ [0.181, 0.2] the system (2)
has chaotic solution – two strange attractors in the regions of two heteroclinic
cycles. It is interesting to note that after c5 = 0.2 (till the end of the inter-
val), the inverse period-doubling bifurcations occur and the system passes from
chaotic regime to a regular one. For c5 ∈ [0.28, 0.7], the system (2) has periodic
solution with period three.

We also conclude, that an apparent sudden collapse in the chaotic at-
tractor size occurs at a value of the control parameter c5 ≈ 0.149. Such a
sudden qualitative change in a chaotic attractor is known as interior crisis [41,
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Fig. 4. Bifurcation diagram (M2)n versus c5, generated by computer
solutions of the system (2), computed with the parameters:c1 = c3 = 0.4,

c2 = 10, c4 = 5, c5 ∈ [0.01, 0.78], c6 = 5

42]. This conclusion is in accordance with the Theorem explained in previous
Section 3 and the results in the Appendix– see Figs 7 and 8. For c5 ∈ [0.15, 0.18]
the system has one homoclinic cycle (for fixed point O1) and two heteroclinic
cycles – Γ2,3

0 ⊂ W u(s)(O2) ∩ W s(u)(O3); Γ4,5
0 ⊂ W u(s)(O4) ∩ W s(u)(O5). For

details, see Appendix Fig. 11. From dynamical point of view, as c5 increases,
the fixed points O2 − O5 change the position (see Fig. 2 a). The saddle-foci
O2 − O5 remove from O1 and its unstable manifolds do not influence on the
saddle-focus O1, i.e. on the stability of the “basic” cycle. This excludes the
possibility of a heteroclinic cycle for any finite c5 larger than 0.4.

In Fig. 5, the bifurcation diagram of system (2) (as c1 ∈ [0.4, 0.88])
is shown. It can be seen, that at c1 > 0.42 chaotic solution with two strange
attractors occurs. The white zones, seen in Fig. 6, correspond to inverse
bifurcations, which are very fast. At about c5 ∈ [0.4, 0.419], a single strange
attractor takes place, which at the end of the interval bifurcates into two strange
attractors. Comparing results presented in Figs 4, 5 and 6, we conclude that
the case, when c1 is a bifurcation parameter, is more interesting from dynamical
point of view than those with bifurcation parameter c5. Discussing the results
shown in Fig. 6, it is seen that for c5 ∈ [0.422, 0.428] and c5 ∈ [0.758, 0.763]
the system has periodic solutions and homoclinic cycle (for fixed point O1) and
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Fig. 5. Bifurcation diagram (M2)n versus c1, generated by computer so-
lutions of the system (2), computed with the parameters: c1 ∈ [0.4, 0.88],
c3 = 0.4, c2 = 10, c4 = 5, c5 = 0.175, c6 = 5

two heteroclinic cycles - Γ2,3
0 ⊂ W u(s)(O2) ∩ W s(u)(O3); Γ4,5

0 ⊂ W u(s)(O4) ∩

W s(u)(O5), respectively – see Figs 8 and 9 in Appendix.

It is interesting, that in the second interval (see Fig. 6 right panel) the
one strange attractor disappears/appears suddenly, as one heteroclinic cycle
collapse.

5. Summary and conclusions

An important feature of robust heteroclinic cycles is that they may
attract nearby dynamics. What happens, when a cycle loses stability? Such
bifurcation may lead to the appearance of long period periodic orbits, other
heteroclinic cycles, and more complicated dynamics.

The present paper studies numerically how the dynamics and global
behaviour of system (2) vary, when we keep c2 = 10, c3 ∈ [0.4, 0.9], c4 = 5,
c6 = 5 and change c1 and c5. We focused our estimations on the bifurcation
behaviour, route to chaos and occurrence of homoclinic and heteroclinic struc-
tures (cycles). It is curious, that system (2), which is a purely mechanical
interpretation of the Lorenz system, displays some more interesting, from dy-
namical point of view, behaviours. Our new results suggest that the system
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1c1c

n
M 2 n

M 2

Fig. 6. Bifurcation diagrams of system (2), computed with the parameters:
c1 ∈ [0.41, 0.43] – left panel and c1 ∈ [0.75, 0.77] – right panel

(2) possesses: (i) five unstable fixed points from saddle-focus type; (ii) a homo-
clinic structure for fixed point O1; (iii) two heteroclinic structures Γ2,3

0 and Γ4,5
0 ,

including two fixed points; (iv) homoclinic and heteroclinic orbits can exist at
the same time. In the case, when the system possesses two strange attractors,
two heteroclinic structures, including two fixed saddle-focuses take place, as for
c5 ∈ [0.758, 0.763] the one strange attractor disappears/appears suddenly. In
this case, the corresponding heteroclinic cycle collapses.

According to heteroclinic Shilnikov criteria, if system (11) has hetero-
clinic orbits of Shilnikov type, which connect two distinct saddle-foci of the
system, then it has both Smale horseshoes and horseshoe type chaos.

In conclusion, concerning the system evolution and bifurcation scenar-
ios, we find new results for its routes to chaos.
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Appendix

Additional figures

Fig. 7. Results for σ0 and σ1 of equilibrium O1, as functions of control parameter c5.
According to Theorem, there are intervals where the basic cycle is stable

Fig. 8. Results for σ0 and σ1 of equilibrium O2, as functions of control parameter c5.
According to Theorem, the system has infinite number of saddle limit cycles, and

there are intervals, where the basic cycle is absolutely unstable (repelling). Here, we
note that results for O3, O4 and O5 are similar
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Fig. 9. Results for σ0 of equilibrium O1, as
functions of control parameter c1. Accord-
ing to Theorem, there are intervals where

the one basic cycle is stable

Fig. 10. Results for σ0 and σ1 of equilibrium O2, as functions of control parameter
c1. According to Theorem, the system has infinite number of saddle limit cycles, and
there are intervals where the basic cycle is absolutely unstable (repelling). Here, we

note that results for O3, O4 and O5 are similar
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Fig. 11. Heteroclinic structure (cycle) from
two saddle-foci


