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Abstract. We investigate flow of incompressible fluid in a cylindrical
tube with elastic walls. The radius of the tube may change along its
length. The discussed problem is connected to the fluid-structure inter-
action in large human arteries and especially to nonlinear effects. The
long-wave approximation is applied to solve model equations. The ob-
tained model Korteweg-deVries equation possessing a variable coefficient
is reduced to a nonlinear dynamical system of three first order differen-
tial equations. The low probability of a solitary wave arising is shown.
Periodic wave solutions of the model system of equations are studied and
it is shown that the waves, that are consequence of the irregular heart
pulsations may be modelled by a sequence of parts of such periodic wave
solutions.
Key words: Blood flow in large arteries, long-wave approximation, vari-
able coefficient Korteweg-deVries equation, periodic solutions.

1. Introduction

Nonlinear phenomena are usual for fluid mechanics [1]–[5]. One of the

most interesting nonlinear phenomena is the nonlinear waves propagating in

various media [6]–[9] and especially in fluids [10, 11]. In this paper, we shall

discuss nonlinear waves arising do to fluid-structure interaction in large arteries

[12]–[14]. There exist many kinds of possible methodologies to investigate trav-

eling waves of the model nonlinear partial differential equations. One of them is
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to reduce the corresponding nonlinear partial differential equation (PDE) to a

system of nonlinear ordinary differential equations and then to investigate the

obtained system numerically. Another one is to apply methods for obtaining

(exact) solutions of the studied nonlinear partial differential equation [15]–[19].

We shall use the first of the above methodologies in this paper.

Fluid flow connected to spreading of pressure pulses in elastic tubes is

of interest for large arteries arterial mechanics [20]–[26]. In this case, the non-

linearities are important for the study of the flow and because of this, one has

to use non-linear model differential equations. In the mathematical models,

arteries usually are treated as circularly cylindrical long homogeneous isotropic

tubes, which length is much larger than its radius (i.e. the corresponding tube

can be considered as thin tube with respect to the ratio length/thickness). Be-

low, we shall study the propagation of non-linear waves in a fluid-filled long

elastic tube with variable radius. The fluid will be incompressible (this is a

reasonable assumption for the case of blood flow in large arteries) and the tube

will be isotropic, inhomogeneous and prestressed. The model equations of the

motion of the tube wall will be reduced to a variant of the Korteweg-deVries

equation with one variable coefficient. This nonlinear partial differential equa-

tion will be further reduced to a system of three nonlinear ordinary differential

equations for the case of traveling waves. The system of nonlinear ordinary

differential equations will be studied numerically.

The organization of the paper is as follows. In Section 2 we discuss

the model equations for the blood flow in a large artery. In Section 3, by

application of the long-wave approximation the model equation will be reduced

to a forced Korteweg-deVries equation and this equation will be further reduced

to a system of three nonlinear ordinary differential equation. In Section 4 we

perform a numerical study of the system of nonlinear ODEs. Several concluding

remarks are summarized in Section 5.

2. Mathematical formulation of the model

For our study, we shall use the nonlinear model presented in [20]. The

model has two parts: equations of the elastic tube and equation of the fluid in

the tube. First, we describe the model equations of the elastic tube. We set a

cylindrical polar co-ordinate system with axial axis coinciding to the axis of the

(straight) studied tube. We denote the base vectors of this co-ordinate system
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as ~er, ~eθ, ~ez. R0 is the radius of the tube before the stretching. The tube is

assumed to be tapered (with small tapering angle Φ). Z∗ is the axial co-ordinate

along the axis of the elastic tube. Because of the tapering, the radial coordinate

of the tube point with axial co-ordinate Z will be R0 + Z∗ sinΦ ≈ R0 + Z∗Φ.

Thus, the initial coordinate of the point will be ~R = (R0 + Z∗Φ)~er + Z∗~ez.

We assume that there is axial stretch of the tube. After the stretching

the axial co-ordinate becomes z∗ = λzZ
∗, where λz is the axial stretch ratio

(for the case without stretching λz = 1). In addition, there is axially-dependent

static pressure P0(Z
∗), imposed on the tube (it has to be understood as the

end of the diastolic pressure). Let r0 be the deformed radius of the tube at

the origin of the coordinate system. We have to introduce the function f∗(z),

which characterizes the radius change, if the form of the tube doesn’t remain

cone. Additional (dynamical) displacement of the tube arises from the presence

of fluid (blood) flow. This displacement depends on the coordinate z∗ and on

the time t∗. Let us denote this displacement as u∗(z∗, t∗). Then, the coordinate

of the point of the tube becomes:

(1) ~r0(z
∗) = [r0 + f(z∗) + u∗(z∗, t∗)]~er + z∗~ez.

In this case, the lengths of the elementary meridional and circumferential tubes

are as follows. The arc-length of the meridional curve element is:

(2) ds0z =

[
1 +

(
∂f∗

∂z∗
+

∂u∗

∂z∗

)2
]1/2

dz∗.

The arc-length of the circumferential curve element is:

(3) ds0θ = (r0 + f∗ + u∗)dθ.

The corresponding stretch ratios after the static and dynamic deforma-

tion (when the tube does not remain cone after the static deformation) are:

(4) λ1 = λz
[(1 + [(∂f∗/∂z∗) + (∂u∗/∂z∗)]2]1/2

(1 + Φ2)1/2
; λ2 = λz

r0 + f∗ + u∗

λzR0 + z∗Φ
.

For the case when Φ = 0 (i.e. the tube before applying the static pressure

is cylinder and not a cone): λ1 = λz[(1 + [(∂f∗/∂z∗) + (∂u∗/∂z∗)2]1/2]; λ2 =

λz
r0 + f∗ + u∗

λzR0

. The relationship for λ2 can be written as follows (λθ = r0/R0):
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λ2 =
r0
R0

+
f∗ + u∗

R0

= λθ+
f∗ + u∗

R0

. In the case, when the tube is deformed and

in the general case the unit normal vector ~n does not coincide to the unit vector

~er. The unit tangential vector ~t of the curved surface also does not coincide to

the vector ~ez. The unit normal and tangential vectors can be expressed by the

unit vectors ~er, ~ez. When we take into account, that:

(5) [(1 + [(∂f∗/∂z∗) + (∂u∗/∂z∗)]2]1/2 =
λ1

λz
,

then:

(6)

~t =
[(∂f∗/∂z∗) + (∂u∗/∂z∗)]~er + ~ez

(1 + [(∂f∗/∂z∗) + (∂u∗/∂z∗)]2)1/2

=
λz

λ1

([(∂f∗/∂z∗) + (∂u∗/∂z∗)]~er + ~ez),

(7)

~n =
~er − [(∂f∗/∂z∗) + (∂u∗/∂z∗)]~ez

(1 + [(∂f∗/∂z∗) + (∂u∗/∂z∗)]2)1/2

=
λz

λ1

[~er − [(∂f∗/∂z∗) + (∂u∗/∂z∗)]~ez].

The forces responsible for the motion of a fluid element are: the force of

movement in radial direction due to the existing pressure difference; the force

along the meridional curve; the force acing along the circumferential curve.

The force connected to the motion of the tube element is equal to the mass

of the tube element multiplied by its acceleration. Let the tube thickness

before the static deformation is H. The thickness of the tube after the static

deformation will be h. Then, the mass of the tube element is approximately

ρwhRdθdz, where ρw is the mass density of the material of the tube. The

acceleration of the element is equal to
∂2u∗

∂t∗2
. Thus, this term of the equation

of balance of forces becomes ρwhRdθdz
∂2u∗

∂t∗2
. The tube thickness h after the

static deformation can be expressed by the tube thickness H before the static

deformation. The assumption is that the material is incompressible. This

leads to λ1λ2h = H → h =
H

λ1λ2

. In our case (when axial stretching exists)

the initial radius R0 for tube with length dl transforms to radius R for a tube
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of length λzdl. Assuming that the area remains the same, we have R = R0/λz .

Thus, for the force per unit dθdz we obtain ρwH(R0/λz)
∂2u∗

∂t∗2
.

The pressure force, that acts on the tube element, is equal to the pres-

sure difference P−Pe (where P is the pressure in the tube and Pe is the external

pressure) multiplied by the surface of the tube element that is Rdθdz . Then,

this force becomes (P−Pe) cosφ(Rdθdl). In our case Pe = P0 and P−Pe = P ∗.

The co-ordinate R connected to the element of the tube is R = r0 + f∗ + u∗.

And the entire force per unit dθdz becomes P ∗(r0 + f∗ + u∗).

The remaining two forces are connected to the membrane forces, that

act along the circumferential and meridional curves of the tube. For unit dθdz,

the force acting along the meridional curve is F2
~t. Its vertical component is

T2 = F2
~t · ~n from where T2 = −F2λz/λ1 and F2 = −T2λ1/λz . The force F1

is [20, 27]: F1 =
∂

∂z∗

[
λz

λ1

(r0 + f∗ + u∗)

(
∂f∗

∂z
+

∂u∗

∂z

)
T1

]
. The balance of the

above forces is:

−
λ1

λz
T2 +

∂

∂z∗

{
λz(r0 + f∗ + u∗)(∂f

∗

∂z∗ + ∂u∗

∂z∗ )

λ1

T1

}
+

P ∗(r0 + f∗ + u∗) = ρwH
R0

λz

∂2u∗

∂t∗2
.(8)

Let µ(z∗) be the variable shear modulus of the tube material and Π be

the strain energy density function of the membrane. Then, the wall tensions

T1,2 can be written as:

(9) T1 =
H

λ2

µ(z∗)
∂Π

∂λ1

; T2 =
H

λ1

µ(z∗)
∂Π

∂λ2

.

After a substitution of Eq.(9) in Eq. (8) we obtain the pressure P ∗ as a function

of u∗ and its derivatives:

P ∗ =
ρwHR0

λz(r0 + f∗ + u∗)

∂2u∗

∂t∗2
+

µ(z∗)H

λz(r0 + f∗ + u∗)

∂Π

∂λ2

−

λzR0H

(r0 + f∗ + u∗)

∂

∂z∗

[
µ(z∗)

λ1

(
∂f∗

∂z∗
+

∂u∗

∂z∗

)
∂Π

∂λ1

]
(10)

The model equations of the fluid motion in the tube are as follows. The

blood in a large arteries can be approximated by a Newtonian fluid with respect

to its flow (this is not the case for blood flow in small arteries). In addition, the
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viscosity of the blood may be neglected as a first approximation [28, 29] and

the variation of the quantities with the radial coordinate will be disregarded,

too. So, the Euler equations in cylindrical coordinates is

(11)
∂w∗

∂t∗
+ w∗

∂w∗

∂z∗
+

1

ρf

∂P ∗

∂z∗
= 0,

where ρf is the density of the fluid and w∗ is the axial fluid velocity. In addition
∂A∗

∂t∗
+

∂

∂z∗
(w∗A∗) = 0, where A∗ is the cross-sectional area of the tube. This

area is A∗ = π(r0 + f∗ + u∗)2.

3. Non-dimensionalization of the equations and long-wave ap-

proximation

The following non-dimensional quantities t, z, R0, u, w, m, p, c0 and

E(z) are introduced as follows: t∗ = t

(
R0

c0

)
; c20 =

µ0H

ρfR0

; z∗ = Roz; r0 = λθR0;

u∗ = R0u; m =
ρwH

ρfR0

; w∗ = wc0; P ∗ = pρfc
2

0; µ = µ0E(z). The model

equations for the unknown functions u, w and p in non-dimensionl coordinates

are:

∂w

∂t
+ w

∂w

∂z
+

∂p

∂z
= 0,(12)

2
∂u

∂t
+ 2w

(
∂f

∂z
+

∂u

∂z

)
+ (λθ + f + u)

∂w

∂z
= 0,(13)

p =
m

λz(λθ + f + u)

∂2u

∂t2
+

E(z)

λz(λθ + f + u)

∂Π

∂λ2

−

λz

(λθ + f + u)

∂

∂z

[
E(z)

( ∂f
∂z + ∂u

∂z

)

λ1

∂Π

∂λ1

]
.(14)

In order to proceed further, we shall consider the case of propagation of small

(but finite) amplitude waves in an inhomogeneous thin elastic tube with variable

radius and filled with Newtonian fluid. The following stretched coordinates ξ =

ǫ1/2(z − gt); τ = ǫ3/2z, can be introduced, using small parameter ǫ describing

weakness of nonlinearity. From here, z = τǫ−2/3 and we can use the notations

h(ǫ, τ) = f(z) and Ê(τ, ǫ) = E(z).
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Next, we expand u, w, p, h and Ê in series of the small parameter ǫ:

u = ǫu1(ξ, τ) + ǫ2u2(ξ, τ) + . . . ;w = ǫw1(ξ, τ) + ǫ2w2(ξ, τ) + . . . ,

p = p0 + ǫp1(ξ, τ) + ǫ2p2(ξ, τ) + . . . ;h(ǫ, τ) = 1 + ǫh1(τ) + . . . ,

Ê(ǫ, τ) = 1 + ǫE1(τ) + . . . .(15)

Let U(ξ, τ) = u1. From the systems of equations of orders ǫ and ǫ2, we obtain

for U the partial differential equation:

(16)
∂U

∂τ
+ µ1U

∂U

∂ξ
+ µ2(τ)

∂U

∂ξ
+ µ3

∂3U

∂ξ3
= 0.

The other unknown functions and coefficients are:

w1 = 2
g

λ0

[
U −

(
h1 +

β0
β1

E1

)]
;β0 =

1

λθλz

∂Π

∂λθ
|u=0;

β1 =
1

λθλz

∂2Π

∂λ2

θ

|u=0 −
β0
λθ

;β2 =
1

2λθλz

∂3Π

∂λ3

θ

|u=0 +
β0
λ2

θ

−
β1
λθ

;

α0 = λz
∂Π

∂λz
|u=u; g

2 =
β1
2λθ

; p1 = 2
g2

λθ
(h1 + U) + β0E1,(17)

and µ1,2,3 are as follows:

µ1 =
5

2λθ
+

β2
β1

; µ2(τ) =

(
β2
β1

−
3

2λθ

)
h1(θ) +

(
1

2
−

2β0
β1λθ

E1(τ)

)
,

µ3 =
1

λzλθ

(
m

4λθ
−

α0

2β1

)
.(18)

Finally, we have to deal with the variable coefficient µ2(θ) in Eq.(16).

We introduce the new coordinate η = ξ + τ −

τ∫

0

ds µ2(s). The substitution of

this coordinate in Eq. (16) leads to the equation:

(19)
dU

dη
+ µ1U

dU

dη
+ µ3

d3U

dη3
= 0.

Let V = dU/dη and W = dV/dη. Then, Eq. (19) is reduced to the following

system of three equations for the unknown functions U, V,E:

dU

dη
= V ;

dV

dη
= W ; µ3

dW

dη
= −V (1 + µ1U).(20)
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The quantity U is connected to the deformation of the tube, due to the presence

of fluid with pulsate pressure and this quantity is the main quantity of interest

for us in this paper. This is nondimensional displacement of the tube wall in

the first approximation in specific coordinates η.

4. Numerical results

Eq. (16) possesses a solitary wave solution. This solitary wave solution

is connected to the solitary wave solution of the classical Korteweg-deVries

equation:

(21)
∂D

∂t
+ αD

∂D

∂x
+ β

∂3D

∂x3
= 0.

Now, let:

(22) D∗ = αD/6; x∗ = x/β1/2; t∗ = t/β1/2.

The result of substitution of Eq.(22) in Eq.(21) (we drop the ∗-s) is:

(23)
∂D

∂t
+ 6D

∂D

∂x
+

∂3D

∂x3
= 0.

Let us search for travelling-wave solutions of Eq.(23) of the kind D(x, t) =

D(ζ) = D(x− vt). Eq.(23) becomes:

(24)
dD

dζ
−

6

v
D
dD

dζ
−

1

v

d3D

dζ3
= 0,

which is the same as Eq. (19), when µ1 = −6/v and µ3 = −1/v. The solitary

wave solution of Eq.(17) is:

(25) U(η) =
v

2
sech2

(
v1/2

2
η

)
.

The realization of this solution for the case of wall displacement in large arteries,

however, has low probability, because of two reasons. First, the existence of

the solution (25) requires a relationship between µ1 and µ3 (namely µ1 = 6µ3),

that may not be present in the practical situations. And second, the realization
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of the solution (25) requires specific boundary conditions. The derivatives of

(25) are as follows:

dU

dη
= −

v3/2 sinh(v1/2η/2)

cosh3(v1/2η/2)
;
d2U

dη2
=

v2[2 cosh2(v1/2η/2) − 3]

4 cosh4(v1/2η/2)
,

d3U

dη3
= −

v5/2 sinh(v1/2η/2)[cosh2(v1/2η/2)− 3]

2 cosh5(v1/2η/2)
; . . .(26)

Thus, the boundary conditions for realization of the solitary wave at η = 0

should be:

(27) U(0) =
v

2
;
dU

dη
|η=0= 0;

d2U

dη2
|η=0= −

v2

4
;
d3U

dη3
|η=0= 0; . . .

The realization of these boundary conditions is not very probable, as the heart

pulsations are slightly irregular with respect to amplitude and time between

the beats. Thus, if a solitary wave solution is realized for a pulsation the

next pulsation will lead to slight change of the boundary conditions and the

next solution will be not solitary wave. Then, another scenario for the wall

displacement is more probable and this scenario is connected to the periodic

solutions of Eq. (19).

The periodic wave solutions of Eq. (19) can be realized for much more

values of the boundary conditions and for different amplitudes of quantity U .

Several examples of periodic solutions of Eq. (19), obtained through the system

of equations (20) are shown in Fig. 1:

The periodic solutions can be used for construction of the wave motion

of the wall because of their larger parameter regions of existence in presence

of blood flow from irregularity of heart beats as follows. Let the heart makes

a pulsation and the blood pulse starts to propagate in the artery. This gives

rise to displacement of arterial wall and the dynamical deformation of the wall

can be modelled by a half a period of the periodic wave solution of Eq. (19).

When the next pulsation comes, one can stop at the corresponding values of

U and its derivatives and can treat them as the new initial conditions. These

new initial conditions lead to slightly different periodic solution. Half a period

of this solution can be used to model the dynamical displacement up to the

moment of the next pulsation. At this moment, the reached values of U and its

derivatives are again the initial conditions for next displacement arising from



88 Zlatinka I. Dimitrova

0 10 20 30 40
η

0

0,5

1

1,5

2

2,5

U

(a)

0 0,5 1 1,5 2 2,5
U

-1

0

1

V

(b)

0 10 20 30 40
η

-0,5

0

0,5

1

1,5

2

U

(c)

Fig. 1. Examples for periodic wave solutions of Eq. (20). Figure (a):
µ1 = 1.43; µ3 = 1.1. U(0) = V (0) = W (0) = 0.99. Figure (b): Diagram
of the components U and V for the solution with parameters and initial
conditions, that are the same as those in Fig. (a). Figure (c): µ1 =
4.0; µ3 = 2.1. U(0) = V (0) = 0; W (0) = 1. One may observe that
the period and the amplitude of this solution are different with respect

to the period and the amplitude of the solution from Fig. (a)

the third pulsation, etc. In such a way, a sequence of slightly different wave

solutions of model equation can describe dynamical deformation of arterial wall,

cased by the slight irregularity of the heart pulsation (shown in Fig. 2.) It is

well known, that the time intervals between the heart pulsations are long-range

correlated and this is one of the numerous arising of long-range correlations in

various systems [30]–[33]. Such long-range correlated pseudorandom sequences

modelling heart activity may be generated by a computer program and the

values in the sequence will determine the end of the corresponding wave train

and the beginning of the next wave train. This was realized in Fig. 2.
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0 5 10
η

0,5

1

1,5

2

U

Fig. 2. Periodic behaviour of quantity U , represented the dynamical wall displacement
in coordinate η, constructed by parts of periodic solutions of Eq. (19) by the algorithm
described in the text. It may seem, that behaviour as a single wave is shown in
the figure. Actually, the dynamical deformation is constructed by the parts of three
different periodic solutions of Eq.(19). Namely, it is assumed that after the pulsation
a wall displacement starts at η = 0 with initial conditions U(0) = V (0) = W (0) = 0.99
and µ1 = 1.43; µ3 = 1.1. The wave can reach a point with coordinate η = 2.844, where
initial conditions are U(2.844) = 0.7253; V (2.844) = −0.5571; W (2.844) = 1.5255
and µ1 = 1.42; µ3 = 1.11. The third place is at η = 6.924 with initial conditions
U(6.924) = 0.6409; V (6.924) = −0.2000; W (6.924) = 1.6772 and µ1 = 1.44; µ3 = 1.08

5. Concluding remarks

In this paper, we have shown that the area of research on blood flow

is a large area for application of the methods of nonlinear dynamics. Even the

relative single problem such as investigation of arterial wall displacement caused

by pulsatile flow (where the fluid can be treated as Newtonian and the long-

wave approximation significantly simplifies the equations) lead to relatively

complicated model equations, such as the discussed above variable coefficient

KdV equation. We have stressed, that the solitary wave solution of the model

equation requires very specific initial conditions and relationship among the

two model parameters. Because of this, the probability for realization of this

solution is small. We have discussed another kind of solutions of the nonlinear

model equation, that are much more probable for realization: they do not

require relationship between the two parameters of the model and are robust

against change of the initial conditions, due to the irregularities of the pulsation

dynamics of the heart. These solutions are the periodic solutions of the system

of equations (20). Using parts of these solutions, one can construct a model
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profile of motion of arterial wall, that reflects the irregularities and the long-

range correlations presented in the pulsation activity of human heart.

R EFER EN CES

[1] Hariri, K., S. A. O. Aliev. Fluid Mechanics and Heat Transfer, Advances in
Nonlinear Dynamics Modeling. FL, Boca Raton, CRC Press, 2015.

[2] Yomosa, S. Solitary Waves in Large Blood Vessels. Journal of the Physical Society
of Japan, 56 (1987), 506–520.

[3] Voltairas, P. A., D. I. Fotiadis, D. I. Massalas, L. K. Michalis. Anhar-
monic Analysis of Arterial Blood Pressure and Flow Pulses. Journal of Biome-
chanics, 38 (2005), 1423–1431.

[4] Vitanov, N. K., F. H. Busse. Bounds on the Heat Transport in a Horizontal
Fluid Layer with Stress-free Boundaries. Zeitschrift für Angewandte Nathematik
und Physik (ZAMP), 48 (1997) 310–324.

[5] Vitanov, N. K. Upper Bounds on the Heat Transport in a Porous Layer. Physica
D, 136 (2000), 322–339.

[6] Whitham, G. G. Linear and Nonlinear Waves, New York, Wiley, 1999.

[7] Martinov, N., N. Vitanov. On some Solutions of the Two-dimensional Sine-
Gordon Equation J. Phys A: Math. Gen, 25 (1992), L419–L426.

[8] Martinov, N., N. Vitanov. On the Correspondence between the Self-consistent
2D Poisson-Boltzmann Structures and the Sine-Gordon Waves. J. Phys A: Math.
Gen, 25 (1992), L51–L56.

[9] Grimshaw, R. Nonlinear Waves in Fluids: Recent Advances and Modern Appli-
cations, Wien, Springer, 2005.

[10] Debnath, L. Nonlinear Water Waves, New York, Academic Press, 1994.

[11] Vitanov, N. K. Modified Method of Simplest Equation: Powerful Tool for Ob-
taining Exact and Approximate Traveling-wave Solutions of Nonlinear PDEs.
Communications in Nonlinear Science and Numerical Simulations, 16 (2011),
1176–1185.

[12] Pedley, T. J. The Fluid Mechanics of Large Blood Vessels, Cambridge, Cam-
bridge University Press, 1980.

[13] Mcdonald, D. A. Blood Flow in Arteries,London, Edward Arnold, 1974.

[14] Ku, D. N. Blood Flow in Arteries. Annual Review of Fluid Mechanics, 29 (1997),
399–434.



Numerical Investigation of Nonlinear Waves . . . 91

[15] Kudryashov, N. A. Simplest Equation Method to Look for Exact Solutions
of Nonlinear Differential Equations. Chaos, Solitons & Fractals, 24 (2005), 1217–
1231.

[16] Kudryashov, N. A., N. B. Loguinova. Extended Simplest Equation Method
for Nonlinear Differential Equations. Applied Mathematics and Computation, 205
(2008), 396–402.

[17] Martinov, N., N. Vitanov. Running Wave Solutions of the Two-dimensional
Sine-Gordon Equation. J. Phys A: Math. Gen., 25 (1992) 3609 –3613.

[18] Martinov, N., N. Vitanov. On the Solitary Waves in the Sine-Gordon Model
of the Two-dimensional Josephson Junction. Zeitschrift für Physik B, 100 (1996),
129–135.

[19] Vitanov, N. K. On Modified Method of Simplest Equation for Obtaining Exact
and Approximate Solutions of Nonlinear PDEs: the Role of the Simplest Equation.
Communications in Nonlinear Science and Numerical Simulation, 16 (2011), 4215–
4231.

[20] Demiray, H. Non-linear Waves in a Fluid Filled Inhomogeneous Elastic Tube
with Variable Radius. International Journal of Non-linear Mechanics, 43 (2008),
241–245.

[21] Saito, M., Y. Ikenaga, M. Matsukawa, Y. Watanabe, T. Asada, P.-Y.

Lagree. One-Dimensional Model for Propagation of a Pressure Wave in a Model
of the Human Arterial Network: Comparison of Theoretical and Experimental
Results. Journal of Biomechanical Engineering, 133 (2011), Article No. 121005.

[22] Il’Ichev, A. T., Y.-B. Fu. Stability of Aneurism in a Fluid-filled Ellastic Mem-
brane Tube. Acta Mechanica Sinica, 28 (2012), 1209–1218.

[23] Van Der Vosse, F. N., N. Stergiopoulos. Pulse Wave Propagation in the
Arterial Tree. Annual Review of Fluid Mechanics, 43 (2011), 467–499.

[24] Gopalakrishnan, S. S., B. Pier, A. Biesheuvel. Dynamics of Pulsatile Flow
through Model Abdominal Aortic Aneurysm. Journal of Fluid Mechanics, 758
(2014), 150–179.

[25] Misra, J. C., M. K. Patra. A Study of Solitary Waves in a Tapered Aorta
by Using the Theory of Solitons. Computers & Mathematics with Applications, 54
(2007), 242–254.

[26] Fu, Y. B., A. T. Il’ichev. Solitary Waves in Fluid-filled Elastic Tubes: Exis-
tence, Persistence, and the Role of Axial Displacement. IMA Journal of Applied
Mathematics, 75 (2010), 257–268.

[27] Goldenvizer, A. L. Theory of Elastic Thin Shells, Oxford, Pergamon Press,
1961.

[28] Fung, Y. C. Biodynamics: Circulation, New York, Springer, 1981.

[29] Rudinger, G. Schock Waves in a Mathematical Model of Aortha. J. Appl. Mech.,
37 (1970), 34–37.



92 Zlatinka I. Dimitrova

[30] Ivanov, P. Ch., L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G.

Rosenblum, Z. R. Struzik, H. E. Stanley. Multifractality in Human Heart-
beat Dynamics. Nature, 399 (1993), 461–465.

[31] Ivanov, P. Ch., M. G. Rosenblum, C. K. Peng, J. Mietus, S. Havlin,

H. E. Stanley, A. L. Goldberger. Scaling Behaviour of Heartbeat Intervals
Obtained by Wavelet-based Time-series Analysis. Nature, 383 (1996), 323–327.

[32] Vitanov, N. K., E. D. Yankoulova. Multifractal Analysis of the Long-range
Correlations in the Cardiac Dynamics of Drosophila Melanogaster. Chaos Solitons
& Fractals, 28 (2006), 768–775.

[33] Vitanov, N. K., N. P. Hoffmann, B. Wernitz. Nonlinear Time Series Anal-
ysis of Vibration Data from a Friction Brake: SSA, PCA, and MFDFA. Chaos,
Solitons & Fractals, 69 (2014), 90–99.


