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Abstract. This paper presents an investigation on the behaviour of con-
ventional inverted pendulum with an inertia disk in its free extreme. The
system is actuated by means of torques applied to the disk by a DC mo-
tor, mounted on the pendulum’s arm. Thus, the system is underactuated
since the pendulum can rotate freely around its pivot point. The dynam-
ical model is given with three ordinary nonlinear differential equations.
Using Poincare-Andronov-Hopf’s theory, we find a new analytical formula
for the first Lyapunov’s value at the boundary of stability. It enables one
to study in detail the bifurcation behaviour of the above dynamic system.
We check the validity of our analytical results on the first Lyapunov’s
value by numerical simulations. Hence, we find some new results.
Key words: Inverted pendulum, bounded control, bifurcation analysis,
dynamic behaviour.

1. Introduction

Dynamical systems are families of motions, determined by evolutionary
processes, the evolution of which takes place over time. These systems are
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determined in a variety of ways. Perhaps, the most commonly encountered
examples are those which are determined by models of first order ordinary
differential equations. The term “dynamical system” first appears in mechanics,
where it referred to a mechanical system with a finite number of degree of
freedom.

For some critical parameters in the mechanical and mathematical mod-
els, significant changes in the properties of the solutions occur when they are
modified around critical values called ‘bifurcation points’. The dynamical prop-
erties of the investigated system can vary, when such modification happen and
sustained oscillations can emerge from stable steady states or inversely, oscil-
lations can disappear as damped time limited oscillations, that lead to steady
states.

Bifurcation theory describes qualitative changes in phase portraits, that
occur as parameters, are varied in the definition of a dynamical system [1]. The
computation of Lyapunov quantities (values) is one of the central problems in
considering of small limit cycles in the neighbourhood of equilibrium of two-,
three-, and four-dimensional dynamical systems [2–7]. These values are also
substantial in investigation of the different problems from engineering mechan-
ics, when the corresponding dynamical systems are close to the boundary of
stability domain of its parameters. According to [8], the safe (invertible) and
dangerous (non-invertible) boundaries take place. Such boundaries correspond
to scenario of “soft” and “hard” excitation of oscillations, which was firstly con-
sidered by Andronov [9].

Dynamic behaviour and stabilization of the inverted pendulum is one
of the most interesting problems in modern nonlinear science [10, 11]. Here, we
conduct an investigation of the dynamical behaviour of an inverted pendulum
with bounded control (see Fig. 1). The system is of interest both from the
point of view of dynamically rich structure that it possesses and also because
it is fairly easy to construct a mechanical model of it.

Several investigators have sought to develop nonlinear dynamical mod-
els of the inverted pendulum [12, 13]. It is found, that the inverted state
stabilizes via alternating ‘reverse’ subcritical pitch-fork and period-doubling bi-
furcations, while it destabilizes via ‘normal’ supercritical period-doubling and
pitch-fork bifurcations. On the other hand, in [14] Lozano et al. presented a
stabilization of the inverted pendulum around its homoclinic orbit.

In the recent years, the research is focused towards obtaining control
algorithms for general underactuated nonlinear mechanical systems. An Un-
deractuated Mechanical System (UMS) is this which possesses fewer control
inputs than degrees of freedom [15, 16]. UMSs have been arosen in many
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different real-life applications, such as: helicopters, aircrafts, spacecrafts, verti-
cal take-off and landing aircrafts, under water vehicles, mobile robots, walking
robots and so on. In some UMSs, the lack of action on certain directions can be
interpreted as constrains on the acceleration. Some of these systems represent
academic benchmarks and are part of a standard control laboratory, like the
inverted pendulum, the rotational inverted pendulum, the pendubot [17], the
pendulum driven by a spinning wheel. Linear systems can be rendered passive
via smooth state feedback and they extended a number of stabilization schemes
for global asymptotic stabilization of certain classes of nonlinear systems. The
main contribution of the above systems is to exploit their passivity properties
to develop appropriate control laws [18].

2. Problem formulation

In order to balance the inverted pendulum at the upper equilibrium po-
sition, the control must eventually be switched to a controller, that guarantees
(local) asymptotic stability of this equilibrium.

Here, we are interested in the dynamical behaviour of the inverted (iner-
tial wheel) pendulum with bounded control. The system is actuated by means
of torques applied to the disk by a DC motor, mounted on the pendulum’s arm
[19, 20]. The system is underactuated since the pendulum can rotate freely
around its pivot point – Fig. 1. In this case (according to [21]), the differential

1

O
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3

Fig. 1. The inverted underactuated pendulum
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equations of the motion of the pendulum have the form:

(1)

.
ϕ1 = ϕ2,
.
ϕ2 = q1 sinϕ1 + q2ϕ3 − q3u,
.
ϕ3 = −q1 sinϕ1 − q2 (1 + ρ)ϕ3 + q3 (1 + ρ)u,

where ϕ1 is the angle of the arm (ϕ1 = 0 at the upright position), ϕ2 is the
angular velocity of the arm, ϕ3 is the angular velocity of the disk with respect
to arm, u is the control input (voltage applied to the motor), and q1, q2, q3 and
ρ > 0 are constant coefficients, derived from physical parameters [21]. Here,
we note that the disk position is not considered as a stable variable, because it
is irrelevant for the stabilization of the pendulum in the inverted position.

The control objective is the stabilization of the inverted state of the
pendulum, i.e. when the disk velocity is zero. Thus, according to [21], we
consider an auxiliary control in the form:

(2) u = α1 sinϕ1 + α2ϕ2 + α3ϕ3,

where α1, α2 and α3 are control gains. It is well-know, that function sinϕ1 can
be written in Taylor series, i.e.:

(3) sinϕ1 = ϕ1 −
1

3!
ϕ3
1 +

1

5!
ϕ5
1 − · · ·

If we take only the first and the second terms from (3), and after substitution
of (2) into (1), Eq. (1) takes the form:

(4)

.
ϕ1 = ϕ2,
.
ϕ2 = k1ϕ1 − k2ϕ2 + k3ϕ3 − k4ϕ

3
1,.

ϕ3 = −k5ϕ1 + k6ϕ2 − k7ϕ3 + k8ϕ
3
1,

where:

(5)

k1 = q1 − α1q3, k2 = α2q3, k3 = q2 − α3q3, k4 =
1

6
(q1 − α1q3) ,

k5 = q1 − α1q3 (1 + ρ) , k6 = α2q3 (1 + ρ) , k7 = (1 + ρ) (q2 − α3q3) ,

k8 =
1

6
[q1 − α1q3 (1 + ρ)] .

These three dimensional nonlinear ordinary differential equations are autonomous
(time does not appear explicitly).

The paper is organized as follows: in Section 3, we obtain the analytical
results for first Lyapunov value, when control gains are varied. In Section 4,
we present the numerical results. Finally, Section 5 summarizes our results.

3. Qualitative analysis

It is easy to see, that the equilibrium (steady states) values of the system
(4) are:

(6) ϕ
(1)
1 = ϕ

(1)
2 = ϕ

(1)
3 = 0,
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(7) ϕ
(2,3)
1 = ±

√
6, ϕ

(2,3)
2 = ϕ

(2,3)
3 = 0.

We must accomplish some transformations of system (4), before determining
analytically first Lyapunov value (L1) and Routh-Hurwitz conditions for sta-
bility of fixed points (6) and (7). First, we express (4) in the form:

(8)
...
ϕ1 = −c1

..
ϕ1 + c2

.
ϕ1 + c3ϕ1 + c4ϕ

3
1 − c5ϕ

2
1

.
ϕ1,

where:

(9)
c1 = k2 + k7, c2 = k1 + k3k6 − k2k7,

c3 = k1k7 − k3k5, c4 = k3k8 − k4k7, c5 = 3k4.

Let us denote:

(10) y = ϕ1 − ϕ0.

After substitution of (10) into (8), Eq. (8) takes the form:

(11)
...
y = −c1

..
y +

(

c2 − c5ϕ
2
0

) .
y +

(

c3 + 3c4ϕ
2
0

)

y

− 2c5ϕ0y
.
y + 3c4ϕ0y

2 + c4y
3 − c5y

2 .
y.

Here, ϕ0 is the equilibrium states ϕ
(2)
1 =

√
6 or ϕ

(3)
1 = −

√
6. It is seen, that in

linear terms of (11) we have ϕ2
0, therefore, we can conclude that boundary of

stability (and qualitative behaviour also) for ϕ
(2,3)
1 will be one and the same.

On the other hand, let:

(12)
..
y = w1,

.
y = w2, y = w3.

After substitution of (12) into (11), the third-order ordinary differential equa-
tion (11) is reduced to three first-order differential equations:

(13)

.
w1 = −c1w1 + c6w2 + c7w3 − c8w2w3 + c9w

2
3 + c4w

3
3 − c5w2w

2
3,

.
w2 = w1,
.
w3 = w2,

where:

(14)
c6 = c2 − c5ϕ

2
0, c7 = c3 + 3c4ϕ

2
0,

c8 = 2c5ϕ0, c9 = 3c4ϕ0 .

The flow divergence (13) is:

(15) D3 =
∂

.
w1

∂w1
+

∂
.
w2

∂w2
+

∂
.
w3

∂w3
= −k2 − k7.

The system (13) is dissipative and has an attractor, when D3 < 0, i.e.
α2 ≥ α3 (1 + ρ) .

Following [8], the Routh-Hurwitz conditions for stability of (7) can be
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written in the form:

p = c1 = k2 + k7 > 0,(16)

q = −c6 = k2k7 − k1 − k3k6 + 3k4ϕ
2
0 > 0,(17)

r = −c7 = −c3 − 3c4ϕ
2
0 > 0,(18)

R = pq − r = −c1c6 + c7 > 0.(19)

The notations p, q, r and R are taken from [8]. The boundaries of the
stability region, according to [2, 8] for three dimensional dynamical system, are
two surfaces: Ψ1 (R = 0, p > 0, q > 0) and Ψ2 (r = 0, p > 0, q > 0) . On the
surface R = 0, the characteristic equation has a pair of purely imaginary roots
and here, an Andronov-Hopf bifurcation takes place, and at least one zero root
on the surface r = 0.

From an analytical point of view, the onset of sustained oscillations
generally corresponds to a transition through an Andronov-Hopf bifurcation
point. Beyond the bifurcation point, a stable solution arises in the form of
a small amplitude limit cycle, surrounding the unstable steady state. This
bifurcation can be of two types: (i) supercritical (soft loss of stability) and (ii)
subcritical (hard loss of stability).

When the condition (19) is not valid, the steady state (7) becomes
unstable. In order to characterize the nature of the bifurcation points in the
parameters α1, α2 and α3 of our model (13), the so-called first Lyapunov
value, L1, must be computed and analyzed for the system (13) [2, 3, 8, 9,
22]. In the bifurcation points, a positive first Lyapunov value (this is not
Lyapunov exponent- see appendix in [23] or for a detailed discussion [2, 9,
22]), represents a hard (subcritical or irreversible) bifurcation and predicts,
that the system presents unstable solutions, but may fold back and exhibit
unstable periodic oscillations coexisting with stable steady states. In this case,
the boundary of stability is considered as “dangerous”. In contrast, a negative
value for L1 indicates a soft (supercritical or reversible) bifurcation. Here,
the loss of stability takes place when stable self-oscillations emerge from a
transition through the bifurcation point. In this case, the boundary of stability
is considered “safe”.

We summarize the main analytical results for first Lyapunov value here.
Further details about the derivations of the formulae can be found in the Ap-
pendix. In the case of three first-order autonomous nonlinear differential equa-
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tions, this value can be determined analytically by the formula in [8]:

(20)

L1 (λ0) =
π

4q

[

2
(

A
(2)
33 A

(3)
33 −A

(2)
22 A

(3)
22

)

+ 2A
(2)
23

(

A
(2)
22 +A

(2)
33

)

−

−2A
(3)
23

(

A
(3)
22 +A

(3)
33

)

+ 3
√
q
(

A
(2)
222

)

+A
(3)
333 +A

(2)
233 +A

(3)
223

]

+

+
π

4p
√
q (p2 + 4q)

{

p2
[

2A
(1)
22

(

3A
(2)
12 +A

(3)
13

)

+ 2A
(1)
33

(

A
(2)
12 + 3A

(3)
13

)

+

+ 4A
(1)
23

(

A
(2)
13 +A

(3)
12

)]

+ 4p
√
q
[(

A
(1)
22 −A

(1)
33

)(

A
(2)
13 +A

(3)
12

)

+

+ 2A
(1)
23

(

A
(3)
13 −A

(2)
12

)]

+ 16q
(

A
(1)
22 +A

(1)
33

)(

A
(2)
12 +A

(3)
13

)}

,

where λ0 is defined as a value of α1, α2, α3, q1, q2, q3 and ρ for which the
relation R = 0 takes place. The coefficients An

ij and An
ijk (i, j, k, n = 1, 2, 3)

are defined by corresponding formulas, presented in [8]. According to [3, 8, 23],
after accomplishing some transformations and algebraic operations, we obtain
the formula describing the first Lyapunov value for the model investigated and
calculate its value in the computed bifurcation points (for further details see
Appendix).

We focus our analysis on the effect of changes on the bifurcation param-
eters α1, α2 and α3, which represent the control gains of the system. According
to experiment work [21], we assume the following intervals of mechanically rel-
evant values for α1, α2 and α3: α1 ∈ [15, 400], α2 ∈ [13, 50], α3 ∈ [0.1, 0.5].

In Fig. 2, L1 (λ0) (calculated on the boundary of stability R = 0 in
Eq. (20); for further details, see Appendix) is shown for different values of
the bifurcation parameters α1, α2 and α3. It can be seen that L1 (λ0) passes
through regions for which it is negative or positive. Therefore, following the
terms introduced in [8, 9], we have a soft and a hard stability loss. Unfortu-
nately, Fig. 2 (left panel) gives only a most general idea about the change of
L1. A more detailed investigation of L1 (λ0) is shown in the following Fig. 2
(right panel). What could one observe in the figure? Practically, for different
values of the parameter α2 we have different kind boundary of stability. For
example, the boundary of stability R = 0 (when α2 = 13 and α2 = 50) passes
through different regions of (α1, α3) space. In other words, different kind of
dynamical behaviour is possible. Hence, we can conclude, that the analysis
via Lyapunov-Andronov theory and first Lyapunov value helps us describe and
predict the qualitative behaviour of the system for values of α1, α2 and α3,
higher or smaller than the critical values, established approximated intervals of
values for α1, α2 and α3 in which self-oscillations of the system occur (disap-
pear). However, the precise features of such solutions must be investigated via
numerical simulation.
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Here, we note, that the bifurcation theory of control systems focuses on
the change of its qualitative properties, such as controllability, stabilizability
and the topology of the equilibrium set. In this paper, the second problem is
generally investigated. In particular, it is seen in Fig. 2, that only in some
bounded (but large) control parameter intervals the limit cycle is stable, i. e.
the control of oscillations is bounded effective.

In summary, the results obtained for first Lyapunov value (see Fig. 2)
are key because we have defined a computable, finite region of the α1−α2−α3

space in which sustained oscillations can occur after “soft” or “hard” stabil-
ity loss and in which we can search for oscillatory solutions. In the following
section, we demonstrate numerically different types of behaviour for some par-
ticular values of the model parameters.

4. Numerical simulations

In this section, we perform a numerical analysis of the model (4), based
on the our previous analytical results obtained in Section 3. The parameter
values used in the numerical calculations were selected according to [21], i. e.

0.1

0.4

100 300 400
O

1

0.2

0.3

200

0.5 +

+

+
+

+
+

+

+

+

+
+

+

+

R=0

for α2=13

R=0

for α2=50

3
L 1=0

Fig. 2. Results for first Lyapunov value L1 as function of parameters α1 ∈
[15, 400] , α2 ∈ [13, 50] andα3 ∈ [0.1, 0.5]. It is seen that boundary of stability R = 0
can be ‘safe’ and ‘dangerous’ because L1 is negative or positive. Here we note that
the another system parameters are fixed and are: q1 = 30, q2 = 0.0245, q3 = 0.0393,

ρ = 250
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we used the following values for the system parameters:

(21)
q1 = 30

[

s−2
]

, q2 = 0.0245
[

s−1
]

, q3 = 0.0393
[

s−1
]

,

ρ ∈ [249.4, 250.1] ,

α1 ∈ [15, 400]
[

s−1
]

, α2 ∈ [13, 50] , α3 ∈ [0.1, 0.5] .

Here, we note that α2, α3 and ρ are dimensionless parameters and
in all our simulations time is in seconds. In Fig. 3, the stable solutions for
the angle of the arm, ϕ1 [rad], the angular velocity of the arm, ϕ2 [s−1], and
the angular velocity of the disk with respect to arm, ϕ3 [s−1], are shown for
α1 = 75, α2 = 30 and α3 = 0.5. It is evident, that after several physically
acceptable fluctuations (see Fig. 3 a, b, c), ϕ1, ϕ2 and ϕ3 approach constant
values (equilibrium state). In other words, in this case the conditions (16)–(19)
from previous section are satisfied and the system (4) lies in stable zone of its
parametric space. Here, we note that the governing equations of the model,
represented by (4), were solved numerically using MATLAB [24] with initial

φ1

φ2

(a)

(c)

(b)

(d)

φ3

φ2

φ1

φ3

Fig. 3. Stable solutions and phase space of system (4). Time is in seconds
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conditions ϕ0
1 = ϕ0

2 = 0, ϕ0
3 = 0.01. In Fig. 3d, the phase space of the system

(4) is shown.

In the next Fig. 4, the periodic solutions and the phase space of the
system (4) are shown. In this case, the following values of the model parameters
are accepted: q1 = 30, q2 = 0.0245, q3 = 0.0393, ρ = 250, α1 = 376, α2 = 30,
α3 = 0.5. Our simulation demonstrates that the pendulum inverse state is
stabilized near equilibrium (6) and a homoclinic limit cycle occurs. The analysis
of the results suggests that in this case the system possesses one unstable fixed
point from kind saddle and two stable fixed points from kind focus. Here, we
note that these results are in accordance with the analytical results obtained
in previous Section 2 and those in [14, 21].

Figure 5 illustrates how the system (4) changes its dynamic behaviour
as function of first Lyapunov value. Figure 5 a depicts the solution of the system

φ1

φ2

φ1

φ3 φ3

φ2

Fig. 4. Periodic solution and phase portrait of system (4). Time is in seconds. For
details see text
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(a) (b)

φ1 φ1

Fig. 5. (a) Solution of system (4) when the boundary of stability is ‘safe’. Here
α1 = 89.03, α2 = 13.387 and α3 = 0.15; (b) Solution of system (4) when the boundary
of stability is ‘dangerous’. Now α1 = 159, α2 = 13.387 and α3 = 0.35. For details see

text

(4) in the case when the boundary of stability is ‘safe’, i. e. L1 (λ0) < 0. It
is evident, that stable limit cycle with small amplitude occurs. Here, we note
that system (4) in this case has reversible behaviour, i. e. a slow drift of the
parameters back into the stability region brings a system back into the original
response. On the other hand, Fig. 5b shows the case when the boundary of
stability is dangerous (i. e. L1 (λ0) > 0). This is the case when the system
undergoes very fast to large fluctuations and transition through the stability
boundary may result in disappearance of the equilibrium state. Therefore, the
system is structurally unstable (un-robust).

5. Conclusions

The proposed study treats the problem of dynamical behaviour of a
conventional inverted pendulum with an inertia disk in its free extreme is con-
sidered. The system is actuated by means of torques applied to the disk by
a DC motor, mounted on the pendulum’s arm. The system is underactuated
since the pendulum can rotate freely around its pivot point. The results found
in the present study are in broad agreement with those of [21]. However, some
additional dynamical behaviours of the inverted pendulum were shown.

The investigation of this paper is concerned with the question of whether
the change of control gains α1, α2 and α3 alters the dynamic properties (stabi-
lization) of an inverted pendulum with bounded control. General conclusions
about design principles and the role of control gains can be suggested, since this
system is a classical case study, covering several essential features of inverted
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pendulum and nonlinear control mechanisms
Our investigation is devoted to the use of the bifurcation analysis [1,

2, 9], as a useful tool to investigate such state transitions when strong per-
turbation in the system parameters occurs. In a bifurcation point for a given
parameter, the dynamical system is always structurally unstable and the stabil-
ity conditions of limit cycles depend critically on stability conditions of steady
states. We are able to define not only the structural stability (robustness) of
the steady state, but also the robustness of limit cycles or other types of tra-
jectories, by knowing the sign of the first Lyapunov value at the bifurcation
boundary, as we showed in this work. This is a very central point of the bifur-
cation and stability analysis of steady states, periodic orbits and other types
of trajectories. In our case, Lyapunov-Andronov theory were employed for the
investigation of the original system (4) and the equivalent system (13). Hence,
a new major conclusion of our analysis is the fact that in finite region of the
α1−α2−α3 space the system (4) can have both “soft” and “hard” stability loss,
as boundary of stability in first case is “safe” and in second one “dangerous”, i.
e. reversible and unreversible loss of stability take place.

As a result of our analysis, we found also that in the model (4) may
induce the emergence of system configurations with two stable focuses and
an unstable saddle point of first order. Under these conditions, the system
displays bistability with homoclinic sustained oscillations. In our analysis, we
have found at least one possibility to recover bistability; for details see Figs 6–8
in Appendix.

R EFER EN CES

[1] Guckenheimer, J., P. Worfolk. Dynamical Systems: Some Computational
Problems, In: Bifurcations and Periodic Orbits of Vector Fields, London, Kluwer
Academic Publishers, 1992, 241–279.

[2] Shilnikov, L., A. Shilnikov, D. Turaev, L. Chua. Methods of Qualitative
Theory in Nonlinear Dynamics, Part I and II, London, World Scientific, 2001.

[3] Nikolov, S. First Lyapunov Value and Bifurcation Behaviour of Specific Class
Three-dimensional Systems. Int. J. of Bifurcation and Chaos, 14 (2004), No. 8,
2811–2823.

[4] Kuznetsov, Yu. Elements of Applied Bifurcation Theory, Second Edition, New
York, Springer, 1998.

[5] Leonov, G., O. Kuznetsov. Lyapunov Quantities and Limit Cycles of Two-
dimensional Dynamical Systems. Analytical Methods and Symbolic Computa-
tion. Regular and Chaotic Dynamics, 15 (2010), No. 2–3, 354–377.



Bifurcation Analysis and Dynamic Behaviour of an Inverted Pendulum . . . 29

[6] Nikolov, S., V. Kotev, E. Yankulova. Bifurcation and Dynamical Behaviour
of a Mathematical Model of HIV Infection. J. of Theoretical and Applied Mechan-

ics, 37 (2007), No. 2, 101–116.
[7] Starkov, K. On the Ultimate Dynamics of the Four-dimensional Rossler System.

Int. J. of Bifurcation and Chaos, 24 (2014), No. 11, art. No. 1450149 (7 pages).
[8] Bautin, N. Behaviour of Dynamical Systems near the Boundary of Stability,

Moscow, Nauka, 1984.
[9] Andronov, A., A. Vitt, S. Khaikin. Theory of Oscillations, MA, Reading,

Addison-Wesley, 1966.
[10] Sagdeev, R., D. Usikov, G. Zaslavsky. Nonlinear Physics: From the Pen-

dulum to Turbulence and Chaos, Chur, Harwood Acad. Publ., 1992.
[11] Muskinja, N., B. Tovirnik. Swinging up and Stabilization of a Real Inverted

Pendulum. IEEE Transactions on Industrial Electronics, 53 (2006), No. 2, 631–
639.

[12] Kim, S., B. Hu. Bifurcations and Transitions to Chaos in an Inverted Pendulum.
Physical Review E, 58 (1998), No. 3, 3028–3035.

[13] Nikolov, S., S. Bachvarov. Dynamical Behaviour of Inverted Pendulum with
a Cycloidal Oscillating Suspension Point. Engineering Mechanics, 11 (2004), No.
3, 201–214.

[14] Lozano, R., I. Fantoni, D. Block. Stabilization of the Inverted Pendulum
Around its Homoclinic Orbit. Systems & Control Letters, 40 (2000), No. 3, 197–
204.

[15] Andary, S., A. Chemori, S. Krut. Stable Limit Cycle Generation for Under-
actuated Mechanical Systems. Application: Inertia Wheel Inverted Pendulum, In:
IROS’08: EEE/RSJ International Conference on Intelligent Robots and Systems,
France, Nice, 2008.

[16] Braham, A., B. Cherki, M. Djemai, K. Busawon. Analysis and Control of
Underactuated Mechanical Systems, NY, Springer, 2014.

[17] Spong, M., D. Block. The Pendubot: a Mechatronic System for Control Re-
search and Education. In: Proc. of 34 th IEEE Conf. on Decision and Control,
New Orleans, 1 (1995), 555–556.

[18] Fantoni, I., R. Lozano. Nonlinear Control for Underactuated Mechanical Sys-
tems, London, Springer-Verlag, 2002.

[19] Spong, M., P. Corke, R. Lozano. Nonlinear Control of the Inertia Wheel
Pendulum. Automatica, 37 (1996), 1845–1851.

[20] Block, D., K. Astrom, M. Spong. The Reaction Wheel Pendulum. Synthesis

Lectures on Control and Mechatronics, 1 (2007), No. 1, 1-105.
[21] Alonso, D., E. E. Paolini, J. Moiola. Controlling an Inverted Pendulum with

Bounded Controls, In: Dynamics, Bifurcations, and Control, London, Springer-
Verlag, 2002, 3–16.

[22] Leonov, G. A., N. V. Kuznetsov. Hidden Attractors in Dynamical Systems.
From Hidden Oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Prob-
lems to Hidden Chaotic Attractor in Chua Circuits. Int. J. of Bifurcation and

Chaos, 23 (2013), No. 1, art. No 1330002 (69 pages).



30 Svetoslav Nikolov, Valentin Nedev

[23] Nikolov, S., V. Petrov. New Results about Route to Chaos in Rossler System.
Int. J. Bifurcation and Chaos, 14 (2004), No. 1, 293-308.

[24] MATLAB, The MathWorks Inc., MA, Natick, 2010, http://mathworks.com/.

[25] Seifert, H., W. Threlfall. Variationsrechnung im Groszen (Morsesche The-
orie), Berlin, Teubner, 1938.

[26] Gammaitoni, L., I. Neri, H. Vocca. Nonlinear Oscillators for Vibration En-
ergy Harvesting. Applied Physics Letters, 94 (2009), No. 16, art. No 164102 (3
pages).

Appendix

1. Calculation of the first Lyapunov value

In this paper, following [8], we calculate the first Lyapunov value. Gen-
erally in accordance with Lyapunov-Andronov theory, we have the following:
(i) the sign of Lyapunov’s value determines the character (stable or unstable)
of equilibrium state at R = 0; (ii) the character of equilibrium state at R = 0
qualitatively determines the reconstruction of phase space (including stability
or instability of limit cycle) at the transition from R < 0 to R > 0.

After accomplishing some transformations and algebraic operations for
the coefficients An

ij and An
ijk (i, j, k, n = 1, 2, 3) (into (20)), we obtain the fol-

lowing for the system (13):

(A.1)

A
(n)
33 = A

(3)
333 = A

(2)
233 = 0, A

(n)
22 =

1

∆0
α′

n1a
(1)
33 , A

(n)
23 =

1

∆0
α′

n1α23a
(1)
23 ,

A
(n)
12 =

1

∆0
α′

n1

(

a
(1)
33 α31 + a

(1)
23 α21

)

, A
(n)
13 =

1

∆0
α′

n1α23α31a
(1)
23 ,

A
(2)
222 =

1

∆0
α′

21a
(1)
333, A

(3)
223 =

1

∆0
α′

31α23a
(1)
233.

Here, we note that:

(A.2)

α11 = pc7, α21 = c7, α31 = p (p− c4)− c6,

α12 = c6, α32 = 1, α23 = −
√
q, α22 = α13 = α33 = 0,

a
(1)
23 = −c8, a

(1)
33 = c9, a

(1)
333 = c4, a

(1)
233 = −c5,

and

(A.3) ∆0 = det

∣

∣

∣

∣

∣

∣

α11 α12 α13

α21 α22 α23

α31 α32 α33

∣

∣

∣

∣

∣

∣

= α12α23α31 − α11α23.
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From the previous formula (A.3), we obtain that:

(A.4) α′

11 = α23, α′

21 = −α23α31, α′

31 = α21.

2. Numerical results

Here, we analyze numerically the model constituted by (4). The govern-
ing equations of the model were solved numerically using MATLAB [17]. The
corresponding numerical values of the model parameters are those in (21). The
following Figs 6–8 demonstrate the dependence of the model behaviour on the
parameterα1, when the another model parameters are fixed, i.e. α2 = 30.387,
α3 = 0.2, q1 = 30, q2 = 0.0245, q3 = 0.0393, ρ = 250. In other words these

φ1

φ2

φ1

φ3

Fig. 6. Stable solution of system (4) near fixed point with coordinate ϕ
1
= −

√
6

when α1 = 169.3, α2 = 30.387 and α3 = 0.2. For more details see text

φ1

φ2

φ1

φ3

Fig. 7. Stable solution of system (4) near fixed point with coordinate ϕ
1
= −

√
6

when α1 = 169.5, α2 = 30.387 and α3 = 0.2. For more details see text
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φ1

φ2

φ3φ1

Fig. 8. Stable solution of system (4) near fixed point with coordinate ϕ
1
= −

√
6

with very long oscillation-like transient regime. Here, α1 = 169.8, α2 = 30.387 and
α3 = 0.2. For more details see text

figures illustrate how the solution of the system (4) changes when parameter α1

is equal to 169.3, 169.5 and 169.8. It is seen, that for first and second value the
system has a stable solution, which is near different fixed point with coordinate
ϕ1 = −

√
6 and ϕ1 =

√
6. Under these conditions, the system displays bista-

bility. It can be seen also that in Fig. 8 the oscillation-like transient regime is
very long. Therefore, in this case the system lies very close to the boundary
region, between two stable zones of attraction of fixed points (7) [18, 19]. Here,
we note that similar behaviour can be seen also for another values of α1 in the
interval from 15 to 400.


