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Abstract. The present study deals with two dimensional deformation,
due to internal heat source in a thermoelastic microelongated solid. A
mechanical force is applied along the interface of elastic half space and
thermoelastic microelongated half space. The problem is in the context
of Green Lindsay (GL) theory. The analytic expressions for displacement
component, normal force stress, temperature distribution and microelon-
gation have been derived. The effect of internal heat source and microe-
longation on the derived components have been depicted graphically.
Key words: Thermoelasticity, microelongation, heat source, normal
mode, elastic solid.

1. Introduction

Classical elasticity is inadequate to discuss the behaviour of materials
possessing internal structure. The micropolar elastic model is more realistic
than the purely elastic theory to study the response of materials to external
stimuli. Eringen and Suhubi [1–2] developed a non linear theory of micro elastic
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solids. Later on, a theory was framed in which material particles in solids can
undergo macro-deformations, as well as micro-rotations by Eringen [3–5] and
named the theory as “linear theory of micropolar elasticity”.

The axial stretch was included during the rotation of molecules by Erin-
gen [6] and named the theory as micropolar elastic solid with stretch. Nowacki
[7], Eringen [8], Tauchert et al. [9], Tauchert [10] and Nowacki and Olszak [11]
included thermal effects in the micropolar theory. One can refer to Dhaliwal
and Singh [12] for a review on the micropolar thermoelasticity and a historical
survey of the subject. The general theory of micromorphic media has been
summed up in “Continuum Physics” series by Eringen and Kafadar [13]. Lord
and Shulman [14] and coupled theory of elasticity are two important general-
ized theories of thermoelasticity. Entropy production inequality was proposed
by Muller [15]. A generalization of this inequality was proposed by Green and
Laws [16]. Green and Lindsay [17] obtained another version of these consti-
tutive equations. These equations were also obtained independently and more
explicitly by Suhubi [18]. This theory contains two constants that act as relax-
ation times and modify all the equations of coupled theory, not only the heat
equations. The classical Fourier law of heat conduction is not violated, if the
medium under consideration has a centre of symmetry.

Barber [19] studied thermoelastic displacements and stresses due to a
heat source moving over the surface of a half plane. Sherief [20] obtained com-
ponents of stress and temperature distributions in a thermoelastic medium
due to a continuous source. Dhaliwal et al. [21] investigated thermoelas-
tic interactions, caused by a continuous line heat source in a homogeneous
isotropic unbounded solid. Chandrasekharaiah and Srinath [22] studied ther-
moelastic interactions due to a continuous point heat source in a homogeneous
and isotropic unbounded body. Sharma et al. [23] investigated the distur-
bance due to a time-harmonic normal point load in a homogeneous isotropic
thermoelastic half-space. Sharma and Chauhan [24] discussed mechanical and
thermal sources in a generalized thermoelastic half-space. Sarbani and Amitava
[25] studied the transient disturbance in a half-space due to moving internal
heat source under Lord-Shulman model. Youssef [26] found the solution for the
problem on a generalized thermoelastic infinite medium with a spherical cavity,
subjected to a moving heat source.

A microelongated elastic solid possesses four degrees of freedom: three
for translation and microelongation. In microelongation theory, the material
particles can perform only volumetric micro elongation in addition to clas-
sical deformation of the medium. The material points of such medium can
stretch and contract independently of their translations. Solid liquid crystals,
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composite materials reinforced with chopped elastic fibres, porous media with
pores filled with non-viscous fluid or gas can be categorized as microelongated
medium. Shaw and Mukhopadhyay [27] discussed the variation of periodical
heat source response in a functionally graded microelongated medium. Shaw
and Mukhopadhyay [28] studied the thermoelastic interactions in a microelon-
gated, isotropic, homogeneous medium in the presence of a moving heat source.
Ailawalia and Sachdeva discussed plane strain problem in a thermoelastic mi-
croelongated solid with an overlying infinite non-viscous fluid [34].

In the present problem, deformation due to internal heat source in a
thermoelastic microelongated solid along the interface of elastic half space has
been discussed. The normal mode analysis is applied to derive the expressions
for the considered variables for Green Lindsay (GL) theory of thermoelasticity
and the variations of the considered variables are represented graphically.

2. Problem formulation

The constitutive equation for a homogeneous, isotropic, microelongated,
thermoelastic solid are [28]:

(1) σkl = λδklur,r + µ(uk,l + ul,k)− β0

(

1 + t1δ2k
∂

∂t

)

Tδkl + λ0δklϕ,

(2) mk = a0ϕ,k,

(3) s− σ = λ0uk,k − β1

(

1 + t1δ2k
∂

∂t

)

T + λ1ϕ,

(4) qk =
K∗

T0

T,k,

where, β0 = (3λ+ 2µ)αt1 , β1 = (3λ+ 2µ)αt2 .
The field equation of motion, according to [29, 30] and heat conduction

equation according to [31] for the displacement, microelongation and tempera-
ture changes are:

(5) (λ+ µ)uj,ij + µui,jj − β0

(

1 + t1δ2k
∂

∂t

)

T,i + λ0ϕ,i = ρüi,

(6) a0ϕ,ii + β1

(

1 + t1δ2k
∂

∂t

)

T − λ1ϕ− λ0uj,j =
1

2
ρj0ϕ̈,
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(7)
K∗T,ii − ρC∗

(

1 + t0δ1k
∂

∂t

)

Ṫ − β0T0

(

1 + t0δ1k
∂

∂t

)

u̇k,k

−β1T0ϕ̇+ ρ

(

1 + t0δ1k
∂

∂t

)

Q = 0.

The equation of motion and stress components in an elastic medium
are given by [32]:

(8) (λe + µe)uej,ij + µeue,ii = ρeüei ,

(9) σe
ij = λeuej,jδij + µe(uei,j + uej,i).

We consider a normal force of magnitude P1, acting along the interface
of microelongated thermoelastic solid half space, occupying the region 0 ≤ x ≤

∞ and an elastic solid half space in the region −∞ ≤ x ≤ 0, as shown in Fig. 1.
We have restricted our analysis to the plane strain parallel to xy plane with
displacement vector:

(9a) ~ui = (u1, u2, 0) and ~uei = (ue1, u
e
2, 0).

Elastic solid

1P

o y

Thermoelastic microelongated solid

x

Fig. 1. Geometry of the problem

To simplify calculations, we use following non-dimensional variables:

x′ =
ω∗

c1
x, y′ =

ω∗

c1
y, u′i =

ω∗ρc1
β0T0

ui, ue
′

i =
ω∗ρc1
β0T0

uei , t′ = ω∗t,

t′0 = ω∗t0, t′1 = ω∗t1, σ′

ij =
σij
β0T0

, ϕ′ =
λ0

β0T0

ϕ, σe′

ij =
σe
ij

β0T0

,

P ′

1 =
P1

β0T0

, T ′ =
T

T0

, Q′ =
1

ω∗c2
1

Q,

where, ω∗ =
ρc21C

∗

K∗
, c21 =

λ+ 2µ

ρ
.
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Using above non dimensional variables and (9a) in equations (5)–(7), we
obtain the following non dimensional equations (after dropping superscripts):

(10) l1
∂2u1
∂x2

+ l2
∂2u2
∂x∂y

+ l3
∂2u1
∂y2

−

(

1 + t1δ2k
∂

∂t

)

∂T

∂x
+

∂ϕ

∂x
=

∂2u1
∂t2

,

(11) l3
∂2u2
∂x2

+ l2
∂2u1
∂x∂y

+ l1
∂2u2
∂y2

−

(

1 + t1δ2k
∂

∂t

)

∂T

∂y
+

∂ϕ

∂y
=

∂2u2
∂t2

,

(12)

(

∂2ϕ

∂x2
+

∂2ϕ

∂y2

)

+ l4

(

1 + t1δ2k
∂

∂t

)

T − l5ϕ− l6

(

∂u1
∂x

+
∂u2
∂y

)

= l7
∂2ϕ

∂t2
,

(13)

(

∂2T

∂x2
+

∂2T

∂y2

)

− l8

(

1 + t0δ1k
∂

∂t

)

∂T

∂t

−l9

(

∂

∂t
+ t0δ1k

∂2

∂t2

)(

∂u1
∂x

+
∂u2
∂y

)

− l10
∂ϕ

∂t
+ l11

(

1 + t0δ1k
∂

∂t

)

Q = 0.

The dimensionless constitutive relations are:

(14) σxx = l1
∂u1
∂x

+ l12
∂u2
∂y

−

(

1 + t1δ2k
∂

∂t

)

T + ϕ,

(15) σxy = l3

(

∂u1
∂y

+
∂u2
∂x

)

,

(16) σyy = l12
∂u1
∂x

+ l1
∂u2
∂y

−

(

1 + t1δ2k
∂

∂t

)

T + ϕ,

where, the coefficients li are given in Appendix-1.

3. Normal mode analysis

The solution of the considered physical variables can be decomposed in
terms of normal mode as:

(ui, u
e
i , T, ϕ, σij , σ

e
ij, Q)(x, y, t) = (u∗i , u

e∗

i , T ∗, ϕ∗, σ∗

ij , σ
e∗

ij , Q
∗)(x)eωt+iby ,

where, u∗i (x), u
e∗

i (x), T ∗(x), ϕ∗(x), σ∗

ij(x), σ
e∗

ij (x), Q
∗ are the amplitudes of field

quantities.
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Using normal mode in equation (10)–(13), we get:

(17) (l1D
2
−B1)u

∗

1 + ibl2Du∗2 −B2DT ∗ +Dϕ∗ = 0,

(18) ibl2Du∗1 + (l3D
2
−B3)u

∗

2 − ibB2T
∗ + ibϕ∗ = 0,

(19) −l6Du∗1 − ibl6u
∗

2 +B2l4T
∗ + (D2

−B4)ϕ
∗ = 0,

(20) −l9B6Du∗1 − ibl9B6u
∗

2 + (D2
−B7)T

∗
− l10ωϕ

∗ = −l11B5Q
∗,

(21) σ∗

xx = l1Du∗1 + ibl12u
∗

2 −B2T
∗ + ϕ∗,

(22) σ∗

yy = l12Du∗1 + ibl1u
∗

2 −B2T
∗ + ϕ∗,

(23) σ∗

xy = l3 (ibu
∗

1 +Du∗2) ,

where, the coefficients Bj are given in Appendix 2.
Eliminating u∗2(x), T

∗(x), ϕ∗(x) from equations (17)–(20), we get:

(24) (D8 +AD6 +BD4 + CD2 + E)u∗1(x) = RQ∗,

where, the coefficients A,B,C,E and R are given in Appendix 3.
Similarly, u∗2(x), T

∗(x), ϕ∗(x) satisfies the equation:

(25) (D8 +AD6 +BD4 + CD2 + E)(u∗2(x), T
∗(x), ϕ∗(x)) = RQ∗,

which can be written as:

(26) (D2
− k21)(D

2
− k22)(D

2
− k23)(D

2
− k24)u

∗

1(x) = RQ∗,

where k2n, (n = 1, 2, 3, 4) are the roots of characteristic equation (25).
The series solution for the physical quantities are given by:

(27) u∗1(x) =

4
∑

n=1

[Mn(b, ω)e
−knx] + S,

(28) u∗2(x) =

4
∑

n=1

[M ′

n(b, ω)e
−knx]− S1,
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(29) T ∗(x) =
4

∑

n=1

[M ′′

n(b, ω)e
−knx]− S2,

(30) ϕ∗(x) =

4
∑

n=1

[M ′′′

n (b, ω)e−knx]− S3,

where, Mn(b, ω), M
′

n(b, ω), M
′′

n(b, ω), M
′′′

n (b, ω) are specific functions, depend-
ing upon b and ω.

Using equation (27)–(30) in equation (17)–(20), we get:

(31) M ′

n(b, ω) = H1nMn(b, ω),

(32) M ′′

n(b, ω) = H2nMn(b, ω),

(33) M ′′′

n (b, ω) = H3nMn(b, ω).

Using (31)–(33), the series solution takes the form:

(34) u∗2(x) =

4
∑

n=1

[H1nMn(b, ω)e
−knx]− S1,

(35) T ∗(x) =
4

∑

n=1

[H2nMn(b, ω)e
−knx]− S2,

(36) ϕ∗(x) =
4

∑

n=1

[H3nMn(b, ω)e
−knx]− S3,

(37) σ∗

xx(x) =

4
∑

n=1

[H4nMn(b, ω)e
−knx] + S4,

(38) σ∗

xy(x) =

4
∑

n=1

[H5nMn(b, ω)e
−knx] + S5,
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(39) σ∗

yy(x) =
4

∑

n=1

[H6nMn(b, ω)e
−knx] + S6,

where, coefficients Hij, S and Sj are given in Appendix 4.

Similarly, for the elastic half space, the solutions are of the form:

(40) ue
∗

1 (x) =

2
∑

n=1

[Rn(b, ω)e
rnx],

(41) ue
∗

2 (x) =
2

∑

n=1

[R′

n(b, ω)e
rnx],

where Rn(b, ω) and R′

n(b, ω) are specific functions, depending upon b and ω
and r2n, (n = 1, 2) are roots of the equation:

(42) (D4
−GD2 + L)ue

∗

1 (x) = 0.

And solutions of physical quantities are given by:

(43) ue
∗

2 (x) =
2

∑

n=1

[L1nRn(b, ω)e
rnx],

(44) σe∗

xx(x) =
2

∑

n=1

[L2nRn(b, ω)e
rnx],

(45) σe∗

yy(x) =

2
∑

n=1

[L3nRn(b, ω)e
rnx],

(46) σe∗

xy(x) =

2
∑

n=1

[L4nRn(b, ω)e
rnx],

where, the coefficients G, L and Lkj are given in Appendix 5.
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4. Applications

We suppress the positive exponentials in the physical problem to de-
termine the parameters Mn, (n = 1, 2, 3, 4) and Rn, (n = 1, 2), which are
unbounded at infinity. Constants M1,M2,M3,M4 and R1, R2 have to be se-
lected, such that boundary conditions at the surface x = 0 are:

σxx = σe
xx − P1e

ωt+iby, u1 = ue1, u2 = ue2, σxy = σe
xy, ϕ = 0,

∂T

∂x
= 0.

where P1 is the magnitude of the mechanical force.
Using the expressions of σxx, σe

xx, u1, u
e
1, u2, u

e
2, σxy, σe

xy, T , ϕ into
above boundary conditions, we get:

4
∑

n=1

[H4nMn]−

2
∑

n=1

[L2nRn] = −P1 − S4,

4
∑

n=1

[Mn]−

2
∑

n=1

[Rn] = −S,

4
∑

n=1

[H1nMn]−

2
∑

n=1

[L1nRn] = −S1

4
∑

n=1

[H5nMn]−

2
∑

n=1

[L4nRn] = −S5,

4
∑

n=1

[H3nMn] = S3,

4
∑

n=1

[H2nknMn] = 0.

After solving the above system of non homogeneous equations , we get
the values of constant M1,M2,M3,M4, R1, R2 and hence, obtain the compo-
nents of normal displacement, normal force stress, temperature distribution and
microelongation at the interface of microelongated thermoelastic half space and
elastic half space.

Special Cases

1. If we neglect microelongation effect i. e. λ0 = β1 = λ1 = a0 = j0 =
0, we obtain the results for thermoelastic solid (TS).

2. Letting Q → 0 in (7) and µe
→ 0 in (8) and (9), problem reduces to

a plane strain problem in thermoelastic microelongated solid with an overlying
infinite non viscous fluid [34].

5. Numerical results and discussions

For numerical computations, we consider the values of constants for
aluminium epoxy-like material as [28]:

λ = 7.59 × 1010 N/m2, µ = 1.89 × 1010 N/m2, a0 = 0.61 × 10−10 N,
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ρ = 2.19× 103 kg/m3, β1 = 0.05 × 105 N/m2K, β0 = 0.05× 105 N/m2K,

C∗ = 966 J/(kgk), K∗ = 252 J/msK, j0 = 0.196 × 10−4 m2,

λ0 = λ1 = 0.37 × 1010 N/m2, t0 = 0.01, t1 = 0.0001, T0 = 293 K.

The physical constants for elastic medium (granite) as [33]:

λe = 0.884× 1010 N/m2, µe = 1.2667× 1010 N/m2, ρe = 2.6× 103 Kg/m3.

The computations are carried out for the value of non-dimensional time
t = 0.2 in the range of 0 ≤ y ≤ 10 and on the surface x = 1.0. The numerical
values for normal displacement, normal force stress, temperature distribution
and microelongation are shown in Figs 2–5 for Green Lindsay (GL) theory
δ1k = 0, δ2k = 1 and mechanical force with magnitude: P1 = 1.0, ω = ω0 + ιξ,
ω0 = −0.2, ξ = 0.1 and b = 0.8.

(a) Thermoelastic microelongated solid (TMS) with Q = 1.0 by solid
line with dashed symbol �.

(b) Thermoelastic microelongated solid (TMS) with Q = 10.0 by dashed
line with centered symbol �.

(c) Thermoelasic solid (TS) with Q = 1.0 by dashed line with centered
symbol N.

(d) Thermoelasic solid (TS) with Q = 10.0 by dotted line with centered
symbol ×.

Fig. 2. Normal displacement variation with horizontal distance
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Fig. 3. Normal force stress variation with horizontal distance

Fig. 4. Temperature distribution variation with horizontal distance

6. Discussion

As expected, the values of normal displacement, normal force stress,
temperature distribution, and microelongation near the point of application
of source are bigger, when the magnitude of internal heat source is larger
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Fig. 5. Microelongation variation with horizontal distance

(Q = 10.0) as compared to that, when the magnitude of internal heat source
is (Q = 1.0) in the range of 0 ≤ y ≤ 10.0. From the Figs 2 and 3, it is very
much clear that normal displacement and normal force stress vary in similar
manner. The variation of all the quantities tends to zero as horizontal distance
increases. These variations of normal displacement, temperature distribution,
normal force stress and microelongation are shown in Figs 2–5, respectively.

7. Conclusion

1. Microelongation and internal heat source have appreciable effect on
all quantities.

2. The magnitude of quantities in the neighbourhood of mechanical
force increases with increase in magnitude of internal heat source.

3. The problem may also be discussed in context of mechanical force
(i.e. Q → 0) and internal heat source (i.e. P1 → 0), separately. The graphical
results of these expressions may also be discussed in similar way.

4. The problem finds wide applications in dynamics and thermoelas-
tic theory, including solid-liquid crystals, composite reinforced materials and
porous media.
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List of used symbols
and notations

List of used abbreviations

σ = σkk microelongational stress tensor
s = skk component of stress tensor
αt1 and αt2 coefficient of linear thermal expansion,
a0, λ0, λ1 microelongational constants
t0, t1 thermal relaxation times
ρ density of microelongated medium
j0 Microinertia
K∗ coefficient of thermal conductivity
C∗ specific heat at constant strain
mk component of microstretch vector
T thermodynamic temperature above reference

temperature T0

ϕ microelongational scalar
λ, µ lame’s constants
δkl kronecker delta
~u displacement vector of microelongated solid
Q internal heat source
~ue displacement vector of elastic solid
λe, µe elastic constants
ρe density of elastic solid
ω complex frequency
b wave number in y-direction
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Appendix 1

l1 =
(λ+ 2µ)

ρc2
1

,

l2 =
(λ+ µ)

ρc2
1

,

l3 =
µ

ρc2
1

,

l4 =
β1λ0c

2
1

a0ω∗β0

,
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l5 =
λ1c

2

1

a0ω∗
,

l6 =
λ2

0

ρa0ω∗
,

l7 =
ρj0ω

∗c2
1

2a0
,

l8 =
ρC∗c2

1

K∗ω∗
,

l9 =
β2

0T0

K∗ω∗ρ
,

l10 =
β0β1T0c

2

1

K∗ω∗λ0

,

l11 =
ρc41

K∗ω∗T0

,

l12 =
λ

ρc2
1

.

Appendix 2

D ≡
d

dx
,

B1 = ω2 + l3b
2,

B2 = (1 + t1δ2kω),

B3 = ω2 + l1b
2,

B4 = b2 + l5 + l7ω
2,

B5 = (1 + t0δ1kω),

B6 = ω(1 + t0δ1kω),

B7 = b2 + l8B5ω.
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Appendix 3

A =
−1

l1l3
[l1l3(B4 +B7)− l1B3 + l3B1 + l3l6 +B2l3l9B6 + b2l22]

B =
−1

l1l3
[−l1B2l4l10l3ω + l1l3B4B7 + l1B3(B4 +B7)− l1b

2B2B6l9 + b2l1B6

−B1l3(B4 +B7) +B1B3 − b2l2
2
(B4 +B7) + l3l6l10B2ω − l3l9B2B4B6

−l9B2B3B6 − l3l6B7 − l3l4l9B2B6 −B3l6]

C =
−1

l1l3
[B2B3l1l4l10ω +B3B4B7l1 − b2l1l6l10B2ω + b2l1l9B2B4B6 − b2l1l6B7

−b2l1l4l9B2B6 +B1B2l3l4l10ω
2
− l3B1B4B7 +B1B3(B4 +B7) + b2B1B2B6l9

+b2l22B2l4l10ω + b2l22B4B7 − 2b2B7l2l6 − 2b2B2B6l2l4l9 − l6l10B2B3ω

+B2B3B4B6l9 +B3B7l6 +B2B3B6l4l9 − b2l6B1]

E =
−1

l1l3
[−l4l10B1B2B3ω −B1B3B4B7 + b2l6l10B1B2ω − b2l9B1B2B4B6

+b2l6B1B7 + b2l4l9B1B2B6]

R = b2l11B1B2B4B5(l4 −B4)

Appendix 4

H1n =
ib[(l1 − l2)k

2

n
−B1]

[(B3 − b2l2)kn − l3k3n]
,

H2n =
[l3k

4

n
− (B4l3 +B3)k

2

n
+ (B3B4 − b2l6)]H1n − ib[l2k

3

n
− (l2B4 − l6)kn]

ib[B2(k2n −B4) +B2l4]

H3n =
(l1k

2

n
−B1 − ibl2knH1n +B2knH2n)

kn
,

H4n = ibl12H1n −B2H2n +H3n − l1kn,

H5n = l3(ib− knH1n),

H6n = ibl1H1n −B2H2n +H3n − l12kn,

S =
RQ∗

E
,
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S1 = ibB1S,

S2 = ibB1(B3B4 − b2l6)S,

S3 = B1S,

S4 = −(B2S2 − S3 + ibl12S1),

S5 = ibl3S,

S6 = −(B2S2 − S3 + ibl1S1).

Appendix 5

G =
b2(a21 + a23 − a22) + (a1 + a3)ω

2

a1a3
,

L =
b4a1a3 + b2ω2(a1 + a3) + ω4

a1a3
,

a1 =
λe + 2µe

ρec2
1

,

a2 =
λe + µe

ρec2
1

,

a3 =
µe

ρec2
1

,

L1n =
ω2 + b2a3 − a1r

2

n

iba2rn
,

L2n =
(λe + 2µe)rn + ibλeL1n

ρc2
1

,

L3n =
λern + ib(λe + 2µe)L1n

ρc2
1

,

L4n =
µe(ib+ rnL1n)

ρc2
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.


