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Abstract. The main focus of the paper is touted as effects of discrete
damping on the dynamic analysis of rotating shaft. The whole analysis is
being carried out through extended Lagrangian formulation for a discrete
- continuous system. The variation formulation for this system is possible,
considering the continuous system as one-dimensional. The generalized
formulation for one dimensional continuous rotary shaft with discrete ex-
ternal damper has been obtained through principle of variation. Using
this extended formulation, the invariance of umbra-Lagrangian density
through extended Noether’s theorem is achieved. Rayleigh beam model
is used to model the shaft. Amplitude equation of rotor is obtained theo-
retically and validated through simulation results. The simulation results
reveal the important phenomena of limiting dynamics of the rotor shaft,
which is due to an imbalance of material damping and stiffness of the
rotor shaft. The regenerative energy in the rotor shaft, induced due to
elasticity/stiffness of the rotor shaft, is dissipated partially through the in-
span discrete damper and also through the dissipative coupling between
drive and the rotor shaft. In such cases, the shaft speed will not increase
with increase in excitation frequency of the rotor but the slip between the
drive and the shaft increases due to loading of drive.
Key words: Umbra-Lagrangian density, extended Noether’s theorem,
dynamic analysis, in-span discrete damping.

1. Introduction

It has been seen in most of the cases of continuous systems that em-
ployed methods of Lagrange and Hamilton are basically obtained through the
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variation principle. There are several direct methods available in literature,
which approximate the continuous system. In such approach, the system is
discretized into finite or discrete particles and equations are obtained, which
are finally approached to the continuous limits. However, such methods do
not provide generality to the solution. The general relationship between one-
parameter continuous symmetry and conserved quantity, specially in field’s
theory has been achieved by Boyer [1]. Some direct method of associating con-
served quantities of Lagrangian system with each dynamical symmetry group
has been reported by Sarlet and Cantrijn [2]. Other symmetry aspects of two-
dimensional and three dimensional order Lagrangian and Hamiltonian formal-
ism are studied by Katzin and Levine [3] and Damianou and Sophocleous [4].
However, such methods are employed only to a system of some specific config-
uration; and generality to the application in the interest of science and engi-
neering are quite missing.

A new proposal of umbra-time was made by Mukherjee [5] to extend the
scope of Lagrangian-Hamiltonian mechanics. A brief and promising commen-
tary on such extension has been given by Brown [6]. The detailed theory and
applications of an extended Lagrangian-Hamiltonian mechanics are presented in
various references [7, 8, 10 and 11]. Further, Mukherjee et. al. [9] has applied
the extended Lagrangian- Hamiltonian mechanics for a general class of con-
tinuous systems, which incorporated gyroscopic coupling and non-conservative
fields, including internal and external damping. Both damping were distributed
homogeneously throughout the system. However, the methodology and case
discussed in ref. [9] did not include the concept of discrete-continuous hybrid
system, which is formulated in this research work.

Rotor dynamics is a subject of interest from the middle of 20th Century
[12, 13]. This area is consistently in demand and has drawn attentions through-
out the globe due to different effects and phenomena [14]. It is a well known
fact, that both internal and external damping is significant for rotating shafts.
The study of spinning shaft with internal damping was first investigated by
Kimball [15]. Although Kimball’s study did not specify the type of damping,
he stated that internal friction due to bending in a spinning shaft contributes
to shaft whirling above the first critical speed. Dimentberg [16] and Gunter
[17] illustrated the concepts of the first critical speed due to internal viscous
damping, which ultimately led to instability in the rotating shaft. Ehrich [18]
studied the stability relationship between internal and external damping and
noted that the rotational speed, at which the rotor becomes unstable, is gov-
erned by the ratio of internal and external damping. Some interesting results
on modelling of internal damping in rotors were reported in the papers of Cran-
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dall [19], Zorzi and Nelson [20], Melanson and Zu [21], Genta [22], and Vance
and Lee. [23]. In some of the studies, the instabilities resulting from internal
damping are characterized. It is noteworthy that damping inform of material
damping contribute the circulatory effects. Internal damping in such cases has
a destabilizing influence on the rotor system. The discrete-continuous mod-
elling of a rotor system was presented by Szoic [24]. In this paper, dynamical
investigations of a rotor shaft system were performed by means of discrete
continuous mechanical models. In such models, a rotating cylindrical shaft
was represented as continuous system, whereas bearings were assumed as dis-
crete elements. In another study by Jivkov and Zahariev [25], the stability
and non-stationary vibrations of rotor-shaft in elastic-viscous field have been
investigated through Bogoliubov–Mitropolski’s asymptotical method. Further,
Krenk [26] has demonstrated the complex mode analysis of cable and beam
problems with concentrated viscous dampers. In these problems, the dissipat-
ing effect of the damper is closely linked with the complex character of the
modes.

The main focus of this paper includes the extension of Lagrangian-
Hamiltonian mechanics for a discrete-continuous hybrid system. In this exten-
sion, umbra-Lagrangian density is efficiently used to describe the motion of the
system. The invariance of umbra-Lagrangian density (ULD) may be achieved
by application of extended Noether’s theorem over manifolds. The general for-
mulation for dissipative effects with in-span concentrated discrete damper is
developed through extended Lagrangian formulation. A case study of a rotat-
ing shaft with in-span discrete damper is analyzed, which shows a significant
phenomenon of limiting dynamics of rotor, beyond threshold speed of instabil-
ity. The effect of discrete external damping is examined and entrainment of
critical whirling speeds at natural undamped modes is observed. A simulation
rig is also created to animate and visualize the effect of in-span discrete damper
on natural modes of rotating shaft.

2. Methodology

2.1. Generalized formulation for one-dimensional discrete-con-

tinuous hybrid system through principle of variation

Generalized formulation for one-dimensional discrete-continuous hybrid
system shaft may be achieved by defining the system over the closed domain
x0 ≤ x ≤ x1, as shown in Fig. 1, where t1 and t2 are considered as arbitrary
times and x is the distance of any material point of the system.

In this generalized formulation of examining the dissipative effects, var-
ious gyroscopic forces, rotary inertia, internal damping and in-span dissipation
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Fig. 1. Schematic diagram of a continuous shaft with uniform mass and constant
rigidity with Inspan discrete damper

has been considered. It is assumed, that shaft is rotated at constant speed with
ω. Umbra-Lagrangian density may be obtained as:
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In the above Eq. (1), ui () is the displacement coordinates of the rotor
in real or umbra time, ρ is the material density of the rotating shaft, EI is the
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rigidity, Id is the rotary inertia, Ip is the inertia of the rotating shaft through
principle axis, ω is the constant angular velocity, µi is internal damping of the
shaft, Ra is the in-span dissipating element. In Eq. (1), fifth term is umbra-
potential, due to In-span external dissipation.

Now, one may take umbra-Lagrangian density variation, which may be
expressed as variations in the action integral in homotopic functions notated
as Ui (t, x, a) and Ui (t, x, b), where i = 1, 2:
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Considering variations in Ui as U∗

i = Ui + ε Ûi, one obtains:
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All such notations are changed as t× a = t, t× b = η with Ui (t, x, b) =
ui(η, x) and Ui (t, x, a) = ui(t, x), where i = 1, 2. After equating the coefficients
of Ui’s, the first part of the Eq. (3) provide umbra-field equations and the
second part provide the boundary conditions at two ends of continuous shaft.
The first part of the equation may be re-arranged inη− t form, one may achieve
umbra field after considering the limit η → t as:
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The boundary conditions at each end, which may be expressed after
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taking limit η → t in Eq. (3), which may be represented as:
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∂2u2(t, x)

∂x2

+µi

(

∂3u2(t, x)

∂t ∂x2
+ ω

∂2u1(t, x)

∂x2

)











+
∂

∂t

(

Id
∂2u2(t, x)

∂t ∂x

)



































= 0,

or u2(t, x) = 0.

(5c)

{

EI
∂2u1(t, x)

∂x2
+ µi

(

∂3u1(t, x)

∂t ∂x2
+ ω

∂2u2(t, x)

∂x2

)}

= 0 or

∂u1(t, x)

∂x
= 0,

(5d)

{

EI
∂2u2(t, x)

∂x2
+ µi

(

∂3u2(t, x)

∂t ∂x2
+ ω

∂2u1(t, x)

∂x2

)}

= 0 or

∂u2(t, x)

∂x
= 0,

The different physical conditions at two ends may be reflected by the
above boundary conditions. The first part in each of the above four pairs depicts
shearing force balance and bending moment balance, and termed as dynamic
boundary conditions. The second part in each pair provides displacement or
slopes, and termed as geometric or essential boundary conditions.

2.2 Classical Noether’s theorem for fields

Noether’s theorem may be effectively employed to obtain an invariant of
motion or conserved quantities for fields and continuous systems. The Noether’s
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theorem [27] for fields states, that any differentiable symmetry of the action
of a physical system has a corresponding conservation laws. It can also be
defined, that for every differentiable symmetry generated by local actions, there
corresponds a constant current. The action of a physical system is the integral
over time of a Lagrangian function, from which the system behaviour can be
formulated by the least action principle.

2.3. Formulation of Extended Noether’s theorem

Formulation of Extended Noether’s theorem may be obtained consid-
ering the methodology provided in Ref. [9] and briefly presented in Appendix
for ready reference of the readers. Some basic concepts of umbra-Lagrangian
density have been provided in reference [6, 7, 11].

The prolonged infinitesimal generators [32, 33 and 34] are composed of
two parts as

(6) p(3)r V = p(3)r Vη + p(3)r Vt,

where, p(3)r Vη and p(3)r Vt are the prolonged umbra-time and real-time component

the infinitesimal generators p(3)r V . One may achieve the invariance of umbra-
Lagrangian density, which may now be expressed as:

(7) p(3)r V (L) = 0.

One may formulate the Extended Noether’s theorem through substitu-
tion and taking the limit η → t,

(8) Lim
η→t

{

p(3)r Vη(L)
}

+ Lim
η→t

{

p(3)r Vt(L)
}

= 0.

The first term of the Eq. (4a) may be represented as:

(9) Lim
η→t

(t, x)p(3)(t,x)r Vη(L)

= Lim
η→t

(t, x)
2
∑

i=1







































ξui(η,x)

(

∂L

∂ui(η, x)

)

+ ξ̇ui(η,x)

(

∂L

∂u̇i(η, x)

)

+ξ′ui(η,x)

(

∂L

∂u′i(η, x)

)

+ ξ̇′ui(η,x)

(

∂L

∂u̇′i(η, x)

)

+ξ′′ui(η,x)

(

∂L

∂u′′i (η, x)

)

+ ξ̇′′ui(η,x)

(

∂L

∂u̇′′i(η, x)

)







































,
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All above notions in details are provided in Appendix. Expanding each term
with derivatives ofξ’s in Eq. (9) yields after simplification as:

(10) Lim
η→t

p(3)r Vη(L)

= Lim
η→t

2
∑

i=1

































Dt



















ξui(η,x)

(

∂L

∂u̇i(η, x)

)

+
∂

∂x

(

ξui(η,x)

(

∂L

∂u̇′i(η, x)

))

−ξui(η,x)
∂

∂x

(

∂L

∂u̇′i(η, x)

)



















+Dx



















ξui(η,x)

(

∂L

∂u′i(η, x)

)

−

(

ξui(η,x)
∂

∂t

(

∂L

∂u̇′i(η, x)

))

+ξ′ui(η,x)

(

∂L

∂u′′i (η, x)

)

− ξui(η,x)
∂

∂x

(

∂L

∂u′′i (η, x)

)



















































,

where Dt is the total time derivative and Dx is the total space derivatives,
respectively and may be mathematically explained as:

(11) DtZ1 (t, x, u, ux) =
∂Z1

∂t
+

∂Z1

∂u

∂u

∂t
+

∂Z2

∂ux

∂ux
∂t

,

(12) DxZ2 (t, x, u, ux, ux2) =
∂Z2

∂x
+

∂Z2

∂u

∂u

∂x
+

∂Z2

∂ux

∂ux
∂x

+
∂Z2

∂ux2

∂ux2

∂x
,

and functions Z1 and Z2 may explained as:

(13) Z1 = Lim
η→t

2
∑

i=1

{

ξui(η,x)

(

∂L

∂u̇i(η, x)

)

+
∂

∂x

(

ξui(η,x)

(

∂L

∂u̇′i(η, x)

))

−ξui(η,x)
∂

∂x

(

∂L

∂u̇′i(η, x)

)}

,

(14) Z2 = Lim
η→t

2
∑

i=1



















ξui(η,x)

(

∂L

∂u′i(η, x)

)

− ξui(η,x)
∂

∂t

(

∂L

∂u̇′i(η, x)

)

+ξ′ui(η,x)

(

∂L

∂u′′i (η, x)

)

− ξui(η,x)
∂

∂x

(

∂L

∂u′′i (η, x)

)



















.

Thus, one may re-write Eq. (10) as:

(15) Lim
η→t

p(3)r Vη(L) = DtZ1 +DxZ2.
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After Substitution of Eq. (15) in Eq. (8) finally results in extended
Noether’s theorem for fields, which may be expressed as:

(16) DtZ1 +DxZ2 + lim
η→t

P 3
r Vt(L) = 0.

Where functions Z1 and Z2 may be defined as:

(17) Z1 = lim
η→t











2
∑

i=1

ξi(η)



















∂L

∂u̇i(η, x)
−

d

dx

(

∂L

∂u̇ix(η, x)

)

+
d2

dx2

(

∂L

∂u̇ixx(η, x)

)





























,

(18)

Z2 = lim
η→t











2
∑

i=1











ξi(η)
∂L

∂uix(η, x)
+ ξ′i(η)

(

∂L

∂uixx(η, x)

)

−ξi(η)
d

dx

(

∂L

∂uixx(η, x)

)





















+ lim
η→t











2
∑

i=1











ξ̇i(η)
∂L

∂u̇ix(η, x)
+ ξ̇

/
i (η)

(

∂L

∂u̇ixx(η, x)

)

−ξ̇i(η)
d

dx

(

∂L

∂u̇ixx(η, x)

)





















.

Equation (16) is represented as an extended Noether’s field equation for
the umbra-Lagrangian density, where Z1 may be defined as local density, Z2 as
current or flux density (It is more often defined as Noether’s current density)
and the last additional term may be defined as the modulatory convection term,
which is due to the contribution of nonconservative actions and gyroscopic
currents, including the dissipation effects, which may also be assumed as local
rate of production.

3. Formulation of continuous rotor shaft with in-span external

damping

In this case study, a rotor shaft with in-span concentrated discrete
damper has been considered in the system. The rotor shaft material com-
prises of internal damping and shaft is driven by a constant supply motor. The
motor is attached with continuation shaft with an aid of dissipated coupling,
as shown in Fig. 2.
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Fig. 2. Continuous rotor shaft with in-span concentrated discrete damper

One may obtain umbra-Lagrangian Density of the system, which may
be written as:

(19)

L =

x1
∫

x0































2
∑

i=1























1

2
ρ

(

∂ui(η, x)

∂η

)2

−
1

2
EI

(

∂2ui(η, x)

∂x2

)2

−
1

2
Id

(

∂2ui(η, x)

∂η ∂x

)2























−µi



















(

∂3u1(t, x)

∂t ∂x2
+ θ̇(t)

∂2u2(t, x)

∂x2

)

∂2u1(η, x)

∂x2

+

(

∂3u2(t, x)

∂t ∂x2
− θ̇(t)

∂2u1(t, x)

∂x2

)

∂2u2(η, x)

∂x2

















































dx

x1
∫

x0

Raδ(x− λ) (u1u̇2 − u2u̇1) dx

−











µi

x1
∫

x0

{

∂2u1(t, x)

∂x2
∂3u2(t, x)

∂t ∂x2
−

∂2u2(t, x)

∂x2
∂3u1(t, x)

∂t ∂x2

}

dx

+Rc

(

θ̇(t)− Ω
)











θ(η)

+
1

2
Jθ̇2(η),

where Rc is damping coefficient of a dissipative coupling, Ra is the damping
coefficient of in-span external damper, and Ω is the excitation frequency. In
Eq. (19), the first term is kinetic energy of the system, the second term is
strain energy for small deflections, where E is the Young’s modulus of the
shaft material, and I is the cross-section moment of inertia, the third term is
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contributed by rotary moments with the angular velocity
∂2ui(η, x)

∂η∂x
, the fourth

term is contributed by gyroscopic forces with constant angular velocity ω, the
fifth term is contributed by discrete external damper, and the sixth term is
umbra-potential, due to internal damping. All terms are in per unit length, In
Eq. (19), the fifth term contributed by external damping is very significant.
For this system with in-span discrete external damping, the term, which needs
special consideration, is:

(20)

L
∫

0

Raδ(x − λ) (u1u̇2 − u2u̇1) dx, where λ ∈ (0, L) .

In this case, δ is Dirac delta function. It is assumed the following form
of motion as:

(21) u1 =
∞
∑

n=1

An cos Ωnt sin
nπ

L
x and, u2 =

∞
∑

n=1

An sinΩnt sin
nπ

L
x,

where An may be defined as slowly varying function with time.

Substitution of Eq. (21) into Eq. (20) yields:

(22) Ra

(

Ωn

∞
∑

n=1

∞
∑

m=1

AnAm sin
nπ

L
λ sin

mπ

L
λ

)

,

The above expression may be used in extended Noether’s theorem to
evaluate the amplitude equation of the system.

3.1 Formulation of extended Noether’s theorem for shaft with

in-span concentrated discrete damper

The extended Noether’s rate with in-span concentrated damping may
be written as:

(23)













∞
∑

n=1

L

2
ΩnAn

{

Ȧn +
1

2ρ

(

µi
n4π4

L4

)

An

}

−
µi n

4π4

2ρL4
θ̇(t)A2

n

+
ΩnRa

2ρ

∞
∑

n=1

∞
∑

m=1

AnAm sin
nπ

L
λ sin

mπ

L
λ













= 0.
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(24)

∞
∑

n=1

An

[

Ȧn +
1

2ρ

{

µi
n4π4

L4
−

µin
4π4

Ωn L4
θ̇(t)

}

An

]

×
L

2

+
Ra

2ρ

∞
∑

j=1

∞
∑

k=1

AjAk sin
jπ

L
λ sin

kπ

L
λ = 0,

or it is written as:

(25)
L

2

∞
∑

n=1

An

[

Ȧn +
1

2ρ

{

µi
n4π4

L4
−

µin
4π4

Ωn L4
θ̇(t)

}

An

+
Ra

ρL

∞
∑

k=1

Ak sin
nπ

L
λ sin

kπ

L
λ

]

= 0.

One may consider independent variations inAn + δ An and after drop-
ping the factor L/2, the variational equation may be expressed as:

(26)

n
∑

n=1

δAn













Ȧn +
1

2ρ

{

µi
n4π4

L4
−

µi n
4π4

Ωn L4
θ̇(t)

}

An

+
Ra

ρL

∞
∑

k=1

Ak sin
nπ

L
λ sin

kπ

L
λ













+

n
∑

n=1

Anδ













Ȧn +
1

2ρ

{

µi
n4π4

L4
−

µi n
4π4

Ωn L4
θ̇(t)

}

An

+
Ra

ρL

∞
∑

k=1

Ak sin
nπ

L
λ sin

kπ

L
λ













= 0.

One may deduce the symmetry condition, which will be valid for neigh-
bourhood paths. The following conditions are essentially required to be satis-
fied, given as:

(27)

Ȧn +
1

2ρ

{

µi
n4π4

L4
−

µi n
4π4

Ωn L4
θ̇(t)

}

An

+
Ra

ρL

∞
∑

k=1

Ak sin
nπ

L
λ sin

kπ

L
λ = 0.

One may examine the condition for entrainment of the nth mode if
An → finite limit and Ak → 0. This is possible only if k 6= n for t → ∞, which
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finally resulted into:

(28)
1

2ρ

{

µi
n4π4

L4
−

µin
4π4

ΩnL4
θ̇(t)

}

+
Ra

ρL
sin2

nπ

L
λ = 0.

The value of θ̇(t) will be obtained from Eq. (28) and written as:

(29)
1

2ρ

µi n
4π4

ΩnL4
θ̇(t) =

1

2ρ
µi

n4π4

L4
+

Ra × 2

ρL× 2
sin2

nπ

L
λ ,

or

(30) θ̇(t) = Ωn

[

1 +
2RaL

3

µin4π4
sin2

nπ

L
λ

]

.

3.2. Umbra-Hamiltonian density of continuous rotor system

It is required to evaluate umbra-Hamiltonian density of the system to
achieve the amplitude equation of the shaft, to achieve an amplitude equation
of the continuous rotor system with in-span damper. Umbra-Hamiltonian [9]
may be expressed as:

(31)

H =

x1
∫

x0



































2
∑

i=1























1

2ρ
P 2
i (η, x) +

1

2
EI

(

∂2ui (η, x)

∂x2

)2

+
1

2
Id

(

∂2ui (η, x)

∂η ∂x

)2























+µi



















(

∂3u1(t, x)

∂t ∂x
+ θ̇(t)

∂2u2(t, x)

∂x2

)

∂2u1 (η, x)

∂x2

+

(

∂3u2(t, x)

∂t ∂x
− θ̇(t)

∂2u1(t, x)

∂x2

)

∂2u2 (η, x)

∂x2





















































dx

+

x1
∫

x0

Ra (x− λ) (u1u̇2 − u2u̇1) dx

+











µi

x1
∫

x0

{

∂2u1(t, x)

∂x2
∂3u2(t, x)

∂t ∂x2
−

∂2u2(t, x)

∂x2
∂3u1(t, x)

∂t ∂x2

}

dx

+Rc

(

θ̇(t)−Ω
)











θ (η)

+
1

2Jd
P 2
θ ,
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where Pi (η, x) = ρ
∂ui (η, x)

∂η
and Pθ (η) = Jdθ̇ (η).

As discussed in reference [9], one may have the similar theorems for
umbra-Hamiltonian density, which may be expressed as:

(32) Lim
η→t

∂ H∗

∂η
= 0 ⇒

dH∗

i

dt
= −Lim

η→t

dH∗

e

∂η
.

Considering the equation (2), one may evaluate exterior umbra-Hamiltonian
density, expressed as:

(33)

Lim
η→t

∂He

∂η
=

x1
∫

x0



















Ra(x− λ)(u1u̇2 − u2u̇1) dx

+µi











{

∂3u1(t, x)

∂t ∂x2
+ θ̇(t)

∂2u2(t, x)

∂x2

}

∂3u1(t, x)

∂t ∂x2

+

{

∂3u2(t, x)

∂t ∂x2
− θ̇(t)

∂2u1(t, x)

∂x2

}

∂3u2(t, x)

∂t ∂x2











dx



















+

















µi

x1
∫

x0



















∂2u1(t, x)

∂x2
∂3u2(t, x)

∂t ∂x2

−
∂2u2(t, x)

∂x2
∂3u1(t, x)

∂t ∂x2



















dx

+Rc

(

θ̇(t)−Ω
)

















θ̇(t) = 0.

The end conditions of the continuous shaft have been taken as pin-pin
considering self-aligning bearing. After substituting Eq. (21) in Eq. (33), one
obtains the following two terms distinguished, as {P} and {Q}:

Lim
η→t

∂He

∂η
= RaΩn

∞
∑

n=1

∞
∑

m=1

AnAm sin
nπ

L
x sin

mπ

L
x

+µi
L

2













∞
∑

n=1

A2
nΩ

2
n

(nπ

L

)4

+θ̇(t)
∞
∑

n=1

A2
nΩn

(nπ

L

)4
+

∞
∑

n=1

Ȧ2
n

(nπ

L

)4













Term {P}

+



µi







L
∫

0

∞
∑

n=1

A2
nΩn sin

2 nπ x

L

(nπ

L

)4







dx+Rc

(

θ̇(t)− Ω
)



 θ̇(t).

T erm {Q}
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Equating term {P} to zero, one obtains the expression:

(34) Ȧ2
n +A2

nΩn

[

µiΩnn
4π4

L4
−

µin
4π4

L4Ωn
θ̇(t) +

2Ra

L
sin2

nπ

L
λ

]

= 0.

Considering independent variations in An+δ An, the variation equation
may be written similar to Eq. (26), after dropping the factor L/2. Repeating
the same steps from Eq. (27) to (28), one obtains the value of θ̇(t) as:

(35) θ̇(t) = Ωn

[

1 +
2RaL

3

µin4π4
sin2

nπ

L
λ

]

.

The Eq. (35) makes the term {P} zero and also resembles with Eq. (30).

After equating the second term {Q} to zero, one may obtain:

(36) µi

∞
∑

n=1

A2
nΩn

(nπ

L

)4
L
∫

0

φ2
ndx+Rc

(

θ̇(t)− Ω
)

= 0.

Considering the shaft’s speed is entrained at

θ̇(t) = Ωn

[

1 +
2RaL

3

µin4π4
sin2

nπ

L
λ

]

,

then all the amplitudes converge to zero except An, thus, the amplitude equa-
tion of the shaft with in- span damping may be obtained as:

An =

√

√

√

√

√

√

√

2Rc

(

Ω− Min
n∈I+

Ωn

[

1 +
2RaL

3

µin4π4
sin2

nπ

L
λ

] )

µi
n4π4

L3
Ωn

,

or

(37) An =

√

√

√

√

√

2Rc

(

Ω− Min
n∈I+

Ωn

[

1 +
2RaL

3

µin4π4
sin2

nπ

L
λ

] )

ζnΩn
,

where ζn = µi
n4π4

L3
. The next section presents the modelling simulation of

rotating shaft with in span concentrated damper.
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4. Modelling and simulation of rotating shaft with in- span

discrete external damping

The physical system of discrete-continuous rotor shaft with in-span dis-
crete external damper has been shown in Fig. 2. The shaft is driven by a
constant supply voltage source through dissipative coupling. Any DC motor
may qualify as a constant supply voltage source. The self aligning bearing is
employed and the coupling of the system is assumed to be flexible in transverse
and longitudinal direction, but at the same time, it is torsion rigid, as torsion
vibrations are not prominent in comparison to transverse and flexural vibra-
tions. The bond graphs are conveniently used as a modelling technique as it
portrays the system from its physical paradigms. The object oriented reusable
capsules, called vector bond graphs of the system, shown in Fig. 3 are created
with in-span discrete external damping.

Fig. 3. Bond graph model of integrated system of rotor shaft with in-span
concentrated external damper

4.1 Simulation studies

The bond graph model [11, 28, 29] of the continuous shaft with in
span concentrated external damping is simulated in SYMBOLS-Sonata [30, 31]
software, in order to visualize the complex modes of the system. However,
the external damping in sub models of shaft has been considered as discrete
or finite. In this case, the effects of concentrated damper are closely linked
to the complex character of modes. The simulation rig consists of a hollow
rotating shaft with hub elements. In this simulation 10 reticules are used, so
that flexural behaviour may be apparent. The two ends are well supported on
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a self-aligning bearing, so as adjust any kind of misalignment. The length of
the beam is taken as 5 m long and external and internal diameters are 0.02 m
and 0.01 m, respectively. The elasticity of material is taken as 104.5e9 N/m2

and density of material is taken as 4420 kg/m3. The damping coefficient of
dissipative coupling is considered as Rc = 0.002 Ns/m. It has been assumed,
that in-span discrete damper permits motion to the rotor and at the same time
leads to substantial energy dissipation.

Simulation is performed for the parameters, as given in Table-1, consid-
ering discrete external damping, Ra = 0.020 and excitation frequency, Ω = 5
Hz or 31.41 rad/s. To reduce the simulation time and running the simulation
effectively, an initial momentum of 0.001 kg-m2 was also given to 3rd reticule.
Figure 4 shows the limit orbits of the rotor shaft, due to loading of the motor.
The significant feature of the simulation is that the spinning speed of the shaft
gets latched at 22.392 rad/s, as the first critical speed of instability, θ̇1st mod e

and matches nearly with the calculated value of shaft spinning speed (latched)
θ̇(t) (Table 1), which is equal to 22.266 rad/s. The analysis has been done at
the point of contact with the discrete external damping.

Table 1. Simulation parameters

Parameter Value
Length of rotor Lbeam = 5 m
Number of elements Nelem = 10

Modulus of elasticity for the rotor shaft
material

E = 104.5e9 N/m2

Density of the rotor shaft material ρ = 4420 kg/m3

Internal radius of the shaft Ri = 0.01 m
External radius of the shaft Ro = 0.02 m
Dissipative coupling coefficient Rc = 0.002 N.m.s
Excitation frequency Ω = 5H z (for first mode)

Ω = 30 Hz (for second mode)
Internal damping coefficient of the rotor
shaft

µi = 1.0e− 4 Ns/m

Discrete External Damping Coefficient
of the rotor shaft

Ra = 0.020 Ns/m (for first mode)
Ra = 6.00 Ns/m (for second mode)

Shaft spinning speed (entrained) calcu-
lated

θ̇(t) = 22.392 rad/s, 95.405 rad/s,
(For Mode 1, 2, respectively)

Further, coefficient of damping for in-span concentrated discrete damper
is increased to 6.0 Ns/m and excitation frequency Ω of the motor is increased
to 30 Hz or 188.327 rad/sec. One may achieve the second threshold speed of
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Fig. 4. Limiting orbit of rotating shaft (at point of contact with in span discrete
external damping) at first two undamped natural modes

Table 2. Comparison of natural frequency

Description
Calculated

Value
Numerical

Value
% Error

First mode natural frequency 3.414 Hz 3.400 Hz 0.41%
Second mode natural frequency 13.66 Hz 13.600 Hz 0.44%

the shaft, shown in Fig. 3, as second mode. It is depicted from the figure, that
the amplitudes of first two natural modes as trajectories of limit orbits, which
are superimposed on the same plot. The simulated value of the natural modes
machetes nearly exact to the calculated natural modes, as given in Table 2. The
interesting phenomenon, observed from this simulation, is that one obtains the
natural undamped modes in this case. The result may also be analysed through
Fast Fourier Transform (FFT) analyser tool, as shown in Figs 5(a)–5(b), where
first two natural frequencies for natural modes are superimposed.

The animation of the limiting orbits is also carried out to visualize the
phenomenon of undamped vibration through animated frames, as shown in Figs
6(a)–6(b). The animation shows, that regenerative energy in the shaft, due to
internal damping is dissipated through the discrete damper and the dissipative
coupling between drive and the rotor shaft. If excitation frequency is more,
then the shaft speed will not increase, but the slip between drive and shaft will
increase due to loading of drive.
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Fig. 5. (a) Superimposed frequency responses at first two undamped natural modes;
(b) Amplitude of first two undamped natural modes
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(a)

(b)

Fig. 6. (a) First mode of vibration of rotor shaft with in- span concentrated external
damping Ra = 0.020, µi = 1e − 4, input speed = 31.41 rad/s and actual speed =
22.392rad/s; (b) Second mode of vibration of rotor shaft with in- span concentrated
external damping Ra = 6.00, µi = 1e − 4, input speed = 188.496 rad/s and actual

speed = 95.490rad/s
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5. Conclusions

It has been demonstrated, that in-span discrete external damping as
an isolated damper can be included in the extended Lagrangian-Hamiltonian
formulation, that permits a general formulation of the dissipation effects in
this new extension. The theory is further used to illustrate the significance of
complex modes in vibrations of rotating shafts, which has been taken as a case
study. An interesting phenomenon of limiting dynamics of a rotor shaft with
in-span external damper through a dissipative coupling has been obtained. The
dynamic behaviour has been analysed through extended Lagrangian-
Hamiltonain formulation for fields. The case study has been analysed theo-
retically and numerically. The study has further examined the various aspects
of limiting dynamics of the rotor shaft and validated through simulation results.
Further, the study demonstrated, that the regenerative energy in the shaft, due
to elasticity/stiffness is dissipated partially through in-span external damper
and the dissipative coupling. Limiting dynamics basically occurred due to the
balance of power imported by internal damping from the shaft spin and dis-
sipation of power by in-span external isolated discrete damper. Some portion
of the energy has also been dissipated in the coupling and a part of action of
internal damping, which acted as an external damping. The animation frames
of the system have depicted the entrainment phenomenon of the whirl speed at
different natural frequencies.

This new extension of Lagrangian-Hamiltonian formulation may be fur-
ther used to illustrate the damped modes in vibration of cables and rods.
Moreover, the concepts can also be employed to analyze the cracked beams
and structures through this new extension.

Nomenclature:

An = Amplitude of nth mode of the rotor

EI = Rigidity of the continuous rotor

H∗ = Umbra-Hamiltonian of the system

Id = Rotary inertia of the rotor

Lbeam = Length of beam

Nelem = Number of elements

Di = Internal Diameter

Do = External Diameter
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ρ = Material density

µi = Internal Damping Coefficient

Ra = Discrete External Damping Coefficient

θ̇(t) = Shaft Spinning Speed

Rc = Damping coefficient of dissipative coupling

V = Infinitesimal generator of rotational SO (2) group

Vt = Real time component of infinitesimal generator

Vη = Umbra time component of infinitesimal generator

n = Mode number

p (η) = Umbra-time momentum

p(t = Real-time momentum

q(t) = Generalized displacement in real time

q (η) = Generalized displacement in umbra-time

q̇(t) = Generalized velocity in real time

q̇ (η) = Generalized velocity in umbra-time

xi () = Linear displacements in real time or umbra-time, where i = 1, . . . , n

ẋi () = Linear velocity in real time or umbra-time, where i = 1, . . . , n

t = Real-time in s.

Ω = Excitation frequency in rad/s.

Ωn = Natural frequency of the rotor shaft in rad/s.

η = Umbra-time in s.

ω = constant angular velocity

( ) = Angular displacement in umbra-time or real time in rad.

θ̇ ( ) = Angular velocity of the shaft in umbra-time or real time in rad/s.

L = Umbra-Lagrangian density

ρ = Mass density of rotor shaft

µa = External damping of the beam
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µi = Internal damping of the beam

γ∗ = Damping ratio

ui(t) = Real displacement coordinates of beam

ui(η) = Umbra- displacement coordinates of beam

H = Umbra-Hamiltonian density

Hi, He = Interior and exterior umbra-Hamiltonian density.

Appendix: Umbra-Lagrangian density and generalized variational
formulation

The umbra-Lagrangian density is a function, defined on an extended manifold
comprising of real time, umbra and real displacements and velocities, and up to second
derivatives of real and umbra displacement with respect to space coordinates x, which
may be written as follows:

(A1) L = f









t, x, U(t, x, a), V (t, x, a), U̇(t, x, a), V̇ (t, x, a), ∂xU(t, x, a),

∂x∂̇xV (t, x, a), U(t, x, a), ∂xV̇ (t, x, a), ∂x2U(t, x, a), ∂x2V (t, x, a),

U(t, x, b), V (t, x, b), U̇(t, x, b), V̇ (t, x, b), ∂xU(t, x, b), ∂xV (t, x, b),

∂xU̇(t, x, b), ∂xV̇ (t, x, b), ∂x2U(t, x, b), ∂x2V (t, x, b)









.

The Lagrangian density may be written as: L(t, x,M(t, x, a), U(t, x, b),
V (t, x, b), U̇(t, x, b), V̇ (t, x, b), . . . ), where a and b are two members of the same ho-
motopic family [29], M(t, x, a)is the modulatory part and may be represented as:

(A2) M(t, x, a) ≈





U(t, x, a), V (t, x, a), U̇(t, x, a), V̇ (t, x, a), ∂xU(t, x, a),

∂xV (t, x, a), ∂xU̇(t, x, a), ∂xV̇ (t, x, a), ∂2
xU(t, x, a),

∂2
xV (t, x, a)



 .

Now the action integral may be expressed as:

(A3) I =

t1
∫

t0

x1
∫

x0

L ( .) dtdx.

This action integral will be subjected to recursive minimization. The present
discussion is illustrated, using a one-dimensional continuous system. For a clear ex-
position, the variations in variables may be represented as follows:

U∗(t, x, b) = U(t, x, b) + εÛ(t, x, b), ∂xU
∗(t, x, b) = ∂xU(t, x, b) + ε∂xÛ(t, x, b),

V ∗(t, x, b) = V (t, x, b) + εV̂ (t, x, b), ∂xV
∗(t, x, b) = ∂xV (t, x, b) + ε∂xV̂ (t, x, b),

∂(t,b)U
∗(t, x, b) = ∂(t,b)U(t, x, b) + ε∂(t,b)Û(t, x, b),
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∂(t,b)V
∗(t, x, b) = ∂(t,b)V (t, x, b) + ε∂(t,b)V̂ (t, x, b),

∂x2U∗(t, x, b) = ∂x2U(t, x, b) + ε∂x2Û(t, x, b),

∂x2V ∗(t, x, b) = ∂x2V (t, x, b) + ε∂x2 V̂ (t, x, b),

It is required to propose a fixed end-points perturbation scheme on the trajectorial
function (U(t, x, b), . . . ), relating to the modulatory function M (t, x, a) and consid-
ering path homotopic loops, based at origins as J : [t1, t2] × [0, 1] → Y , such that
J (t1, ξ) = 0 and J (t2, ξ) = 0 with ξ ∈ [0, 1], the action integral with one-dimensional
variational problem, may be expressed as:

(A4) I (ε) =

t1
∫

to

x1
∫

xo

L (t, x,M (t, x, a) , U∗(t, x, b), V ∗(t, x, b), . . . ) dt dx.

Extremization of the action integral implies δI(ε)ε=0 = 0, which leads to
∇εI (ε)|ε=0 = 0. The condition of extremality results into umbra-Lagrange’s field
equations and boundary conditions at two ends. Now for detailed proof of umbra-
Lagrange’s field equation, it is possible to use concise notations as:

U(t, x, b) = U1(t, x, b), V (t, x, b) = U2(t, x, b), ∂xUi(t, x, b) = Ui,x(t, x, b),

and ∂x2Ui(t, x, b) = Ui,x2(t, x, b),

where i = 1, 2. However, in the above notations, the cognizance of the variance of
the vector field is not taken. Let us consider a one-dimensional continuous system,
defined over the closed domain x0 ≤ x ≤ x1 and, t1 and t2 are the times, at which
configurations of the system are specified and δ is the variation. On adopting such
notational changes, variations in the action integral may be written as:

(A5) δI = ε

t1
∫

t0

x1
∫

x0

2
∑

i=1



























































∂L

∂Ui(t, x, b)
Ûi(t, x, b) +

∂L

∂U̇i(t, x, b)

˙̂
U i(t, x, b)

+
∂L

∂U̇i,x(t, x, b)

˙̂
U i,x(t, x, b)

+
∂L

∂Ui,x(t, x, b)
Ûi,x(t, x, b)

+
∂L

∂Ui,x2(t, x, b)
Ûi,x2(t, x, b)



























































∂t ∂x = 0.
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Through integration by parts of Eq. (A5), one obtains:

(A6)

δI = ε

t1
∫

t0

x1
∫

x0

2
∑

i=1

















































∂L

∂Ui(t, x, b)
−

∂

∂t

∂L

∂U̇i(t, x, b)

−
∂

∂x

(

∂L

∂Ui,x(t, x, b)

)



















Ûi(t, x, b)

+
∂

∂t ∂x

(

∂L

∂U̇i,x(t, x, b)

)

Ûi(t, x, b)

+
∂

∂x2

(

∂L

∂Ui,x2(t, x, b)

)

Ûi(t, x, b)































dtdx

+

t1
∫

t0

2
∑

i=1



































∂L

∂Ui,x(t, x, b)
Ûi(t, x, b)

∣

∣

∣

∣

x1

x0

−
∂

∂t

(

∂L

∂U̇i,x(t, x, b)

)

Ûi(t, x, b)

∣

∣

∣

∣

∣

x1

x0

+
∂L

∂Ui,x2(t, x, b)
Û(t, x, b)

∣

∣

∣

∣

x1

x0

−
∂

∂x

(

∂L

∂Ui,x2(t, x, b)
Ûi(t, x, b)

)∣

∣

∣

∣

x1

x0



































dt = 0.

Considering the following notations as t × a = t, t × b = η with Ui(t, x, b) =
ui (η, x) and Ui (t, x, a) = ui (t, x), where i = 1, 2, the first part of the Eq. (A6)
gives umbra-Lagrange’s field equation for one-dimensional continuous systems, when
equated to zero. Now re-arranging first part in η− t form, umbra field equations may
be written after taking the limit η → t as:

(A7)

∂

∂t

{

Lim
η→t

(

∂L

∂u̇i (η, x)
−

∂

∂x

(

∂L

∂u̇i,x (η, x)

))}

−Lim
η→t











∂L

∂ui (η, x)
−

∂

∂x

(

∂L

∂ui,x (η, x)

)

+
∂

∂x2

(

∂L

∂ui,x2 (η, x)

)











= 0,

where i = 1, 2, and ui,x = ∂ui/∂x.
The second part of Eq. (A6) gives the boundary conditions, when equated to

zero, which reflects the physical (geometric) conditions at the two ends and may be
expressed as:

(A8a) Lim
η→t

[

∂L

∂ui,x (η, x)
−

∂

∂x

(

∂L

∂ui,x2 (η, x)

)

−
∂

∂η

(

∂L

∂u̇i,x (η, x)

)]

ûi (η, x)|
x1

x0
= 0
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(A8b) Lim
η→t

∂L

∂ui,x2(η, x)
ûi,x(η, x)

∣

∣

∣

∣

x1

x0

= 0,

where i = 1, 2. There exist the following possibilities in the boundary conditions.

Either Lim
η→t

[

∂L

∂ui,x (η, x)
−

∂

∂x

(

∂L

∂ui,x2 (η, x)

)

−
∂

∂η

(

∂L

∂u̇i,x (η, x)

)]

= 0 or ui (t, x) =

0, and either Lim
η→t

∂L

∂ui,x2(η, x)
= 0 or ui,x(t, x) = 0, at either of the ends x = x0 and

x = x1. Equation (A7) is the dynamical equations, governing the motion of a one-
dimensional continuous system (or field) with generalized co-ordinates. The solution
of this equation, combined with the appropriate boundary conditions, given by Eqs.
(A8a) and (A8b), specify the true motion of such continuous system, the motion that
ensures the action integral of Eq. (A4) to be extreme.
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