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ABSTRACT: Isogeometric Analysis (IGA) is a new analysis method for uni-
fication of Computer Aided Design (CAD) and Computer Aided Engineering
(CAE). With the use of NURBS basis functions for both modelling and analy-
sis, the bottleneck of meshing is avoided and a seamless integration is achieved.
The CAD and computational geometry concepts in IGA are new to the analysis
community. Though, there is a steady growth of literature, details of calcula-
tions, explanations and examples are not reported. The content of the paper
is complimentary to the existing literature and addresses the gaps. It includes
summary of the literature, overview of the methodology, step-by-step calcu-
lations and Matlab codes for example problems in static structural and modal
analysis in 1-D and 2-D. At appropriate places, comparison with the Finite El-
ement Analysis (FEM) is also included, so that those familiar with FEM can
appreciate IGA better.

KEY WORDS: Isogeometric analysis, B-spline, finite element analysis, com-
puter aided design, Matlab.

1. INTRODUCTION

The finite element method (FEM) is a numerical method for finding an approximate
solution for partial differential equations. In FEM, the geometry of the domain is
divided into a set of elements (mesh). But it is difficult to divide a complicated
geometry into primitive elements (Ex: triangular and quadrilateral element). Also,
meshing is not an exact representation of the geometry. It is an approximate represen-
tation which causes inaccurate solution. Also, mesh generation for complex shapes
is time consuming and it is observed that 80% of the overall analysis time is spent
on meshing. Hence, meshing is the biggest bottleneck in the use of finite element
method [1].

To overcome the above issue, a new concept of Isogeometric analysis (IGA) was
introduced by Hughes et al. [1]. Isogeometric analysis is the bridge between the
Computer Aided Design (CAD) and the Finite Element Method (FEM). The idea of
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IGA is to use B-spline basis functions for representing both geometry and field vari-
able. It completely eliminates the concept of meshing, as the geometry is defined
as parametric representation with B-spline basis functions. This helps in exact mod-
elling of geometric entities, which results in better solution and also reduces a lot of
computation time. B-splines are the most widespread technology in CAD programs
and thus, they are used as basis functions for isogeometric analysis. Second attrac-
tive feature of B-spline is that, each pth order function has p-1 derivatives at element
boundary. In addition to this, NURBS basis function can be refined and their order
can be easily elevated without affecting the geometry or its parameterization. In con-
trast to finite element method, which has two methods of refinement, isogeometric
methodology has three methods of refinement: knot insertion, degree elevation and
k-refinements. K-refinement increases the inter-element continuity as compared to
standard C0 continuity of conventional finite element and therefore, it has superior
accuracy and efficiency as compared to the standard p-refinement.

Over the recent years, a lot of work is carried out in the field of isogeometric
analysis. The first paper on IGA is published by Hughes et al. [1], in which authors
proposed isogeometric methodology. Authors also mentioned different refinement
techniques and their effect on IGA results. Different structural mechanics problems
are solved for the purpose of validation and convergence study.

A vast variety of literature related to defining the geometry with the help of B-
spline basis function can be found [2, 3]. A study is being conducted in relation
to the smoothness, continuity and refinement [4]. Efforts are also being made into
correcting certain deficiencies of B-spline by using T-splines to create a single patch
watertight geometry, which can be locally refined. In addition to T-spline, certain al-
ternatives have also been found such as PHT-splines and LR-splines [5]. PHT-splines
have been used to solve the problems in elasticity for continua and thin structures. It is
easier to do adaptive refinement using PHT-splines. Though, T-splines are favourable
for local adaptive refinement but the procedure for knot insertion is a bit complex,
this issue is addressed in [6] by using hierarchal T-spline refinement algorithms. This
method generates a seamless CAD-FEA integration for very complex geometries.

Since tight coupling of FEA and CAD model in IGA, there is a lot of scope in the
field of structural optimization and some distinctive works are presented in [7, 8]. A
strategy for shape optimization, using isogeometric analysis is proposed by Wall et al.
[7]. They studied analytical sensitivities of B-spline discretization on IGA result, us-
ing gradient-based optimization algorithms. In Hassani et al. [8], shape optimization
for both 2-D and 3-D cases using isogeometric analysis is mentioned. Isogeomet-
ric methodology has shown its prominence in different fields of applications. The
smoothness of NURBS basis functions has made it possible for rotation free for-
mulation of plate or shell elements [9]. The smoothness of higher order NURBS
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basis function has also made it significant for the analysis of fluid structure interac-
tion problems [10]. Isogeometric methodology is also proved to be fruitful in solving
PDEs that involves fourth order derivatives of the field variable, such as Hill-Cahnard
equation [11]. In addition to this, higher order NURBS basis functions are significant
in modelling the electronic structure of semiconducting materials [12]. NURBS has
also shown significant improvement in the analysis of structural vibration problems in
terms of robustness and accuracy, by using k-refinement as compared to higher order
p-refinement [13]. Similar results are evident in the analysis of structural vibration of
thin plates [14].

It is evident, that isogeometric analysis is spreading in various fields, but IGA
method involves the concepts of CAD and Computational Geometry. Hence, it is
difficult for the analysis community (familiar with FEM) to easily understand and
to appreciate. Though several research articles have appeared, it is difficult for re-
searchers to understand the methodology completely from the published works. In
order to further enhance the concept of isogeometric analysis, a detailed method-
ology with corresponding MATLAB code is presented for different types of static
structural and vibration problems. The flow of the paper is as follows: second sec-
tion includes overview of B-spline; in third section, introduction to isogeometric for-
mulation is mentioned; detailed step-wise application of IGA for solving static bar
and plate problems with corresponding MATLAB code is mentioned in section four.
Similarly, in section 5, this methodology is applied for dynamic analysis of beam and
plate along with MATLAB code. In the final section conclusions are drawn.

2. B-SPLINE

The objective of this section is to give an overview of B-splines. B-Splines are piece-
wise polynomial, formed by linear combination of basis functions and control points.
B-spline is divided into pieces at distinct points called knots.

2.1. KNOT VECTOR

A knot vector is a set of non-decreasing knots, which break a B-spline into sub-
domains. These sub-domains are called knot-spans, which are similar to elements
as in FEM. Knot vector is of the form T = {ξ1...ξn+p+1}, where p is the degree
of the B-spline, n is number of control points and ξi is a knot value. If the spacing
between any two consecutive knots is equal, then it is called a uniform knot vector
and otherwise, it is called a non-uniform knot vector. A knot vector is said to be
open, if first and last knots are repeated p times. In IGA, geometry is modelled using
B-spline with open knot vector, because basis functions, which are formed with the
help of open knot vector are interpolatory at the ends. This property is helpful for
applying boundary conditions in IGA.
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2.2. BASIS FUNCTIONS

Based on the degree of the B-spline basis function and knot vector, B-Spline basis
functions are calculated by Cox-de-Boor recursive formula [15].

For p = 1

(1) Ni,1 =

{
1 if ξi ≤ ξ < ξi+1

0 Otherwise

For p > 1

(2) Ni,p =
ξ − ξi
ξi+p − ξi

Ni,p−1 +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 .

B-Spline basis functions are Cp−1 continuous, if internal knots are not repeated.
If knot has a multiplicity of k, then they areCp−k continuous at that knot. In a similar
fashion if a particular knot has multiplicity of p, basis function are C0 continuous or
in other words, they are interpolatory at that knot. Basis functions are all positive for
the whole domain, as it is evident in Fig. 1. Another property of basis functions is
partition of unity, i.e. the summation of basis functions at a parameter value will be
always one.

Fig. 1. Another property of basis functions is partition of unity, i. e. the 
summation of basis functions at a parameter value will be always one.  

 

Fig. 1. B-Spline basis functions 

2.3 B-Spline curve 

B-Spline curve, C(ξ ) of order p is constructed by the linear combination of 
basis functions and control points. The curve is given by: 

(3)                                    ,
1

( ) ( )
n

i p i
i

C N Bξ ξ
=
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where Bi is the ith control point and N is B-spline basis function. The 
resulting B-spline curve does not need to interpolate the control points. 
However, one can force it to do so by using open knot vector with sufficient 
multiplicity to ensure that the basis functions, and hence the B-spline curve, 
will be Cp−m = C0-continuous. A cubic open B-Spline curve is shown in Fig. 
2. 
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Fig. 1. B-Spline basis functions.

2.3. B-SPLINE CURVE

B-Spline curve, C(ξ) of order p is constructed by the linear combination of basis
functions and control points. The curve is given by

(3) C(ξ) =
n∑
i=1

Ni,p(ξ)Bi ,
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Fig. 2. Cubic B-Spline curve with 7 control points. 

2.4 B-Spline surface 

B-Spline surface S(ξ, η) is constructed in the form of tensor product with 
knot vector in two directions, T= {ξ1 , ........., ξn+p+1 }, H={η1 , ........., ηn+q+1 } 
and n×m set of control points Bi,j.  

 (4)                                   , , ,
1 1

( , ) ( ) ( ) .
n m

i p j q i j
i j

S N M Bξ η ξ η
= =

= ∑ ∑   

Here p and q are the degrees of basis functions for Ni,p and Mj,q, 
respectively. 

2.5 Non-uniform rational B-splines (NURBS) 

Non-Uniform Rational B-splines (NURBS) uses non-uniform knot 
vector for calculating B-spline basis function. NURBS is the projection of B-
spline in Rp with homogeneous control points onto Rp-1. NURBS basis 
functions are defined as follows: 
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Fig. 2. Cubic B-Spline curve with 7 control points.

where Bi is the ith control point and N is B-spline basis function. The resulting B-
spline curve does not need to interpolate the control points. However, one can force it
to do so by using open knot vector with sufficient multiplicity to ensure that the basis
functions, and hence the B-spline curve, will be Cp−m = C0-continuous. A cubic
open B-Spline curve is shown in Fig. 2.

2.4. B-SPLINE SURFACE

B-Spline surface S(ξ, η) is constructed in the form of tensor product with knot vector
in two directions, T = {ξ1, . . . , ξn+p+1}, H = {η1, . . . , ηn+q+1} and n ×m set of
control points Bi,j .

(4) S(ξ, η) =
n∑
i=1

Ni,p(ξ)
m∑
j=1

Mj,q(η)Bi,j .

Here p and q are the degrees of basis functions for Ni,p and Mj,q, respectively.

2.5. NON-UNIFORM RATIONAL B-SPLINES (NURBS)

Non-Uniform Rational B-splines (NURBS) uses non-uniform knot vector for cal-
culating B-spline basis function. NURBS is the projection of B-spline in Rp with
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homogeneous control points onto Rp−1. NURBS basis functions are defined as fol-
lows:

(5) Rpi =
Ni,pwi
n∑
i=1

Ni,pwi

,

where w is the corresponding weight and NURBS curve is defined as

(6) C =
n∑
i=1

RpiBi .

where Bi is the control point for B-Spline curve. In a similar way, NURBS surface
and solids are obtained. NURBS inherits all the properties of B-Spline. If all the
weights are equal to one, NURBS becomes B-Splines. The continuity and supports
of NURBS basis functions are same as that of B-Splines.

3. ISOGEOMETRIC ANALYSIS FORMULATION

In this section, brief introduction to isogeometric analysis formulation is given. As
mentioned earlier, the idea of IGA is to use B-spline basis function for representing
both geometry and field variable. This is opposite of iso-parametric formulation of
standard finite element method procedure, where the basis functions derived for the
field variable are used for approximating the geometry as well.

3.1. RELEVANT SPACES INVOLVED IN IGA

In classical finite element analysis, different domains involved are physical mesh,
physical elements and parent domain. The physical mesh is where the geometry is
represented with the help of nodes and elements. The physical mesh is divided into
non-overlapping physical elements. The parent element is where integration is per-
formed by utilizing Gaussian quadrature rule. All physical elements are mapped to
the same parent element. The physical elements are defined by the nodal coordi-
nates, and the degrees of freedom are the values of the basis function at the nodes.
Due to compact support, the local basis functions only have support on neighbouring
elements. The basis functions are interpolating the nodes and are often called shape
functions. In isogeometric analysis, different working domains are physical mesh,
control mesh, parameter space and parent element, all shown in Fig. 3.

The physical space is where the actual geometry is represented by a linear com-
bination of the basis functions and the control points. The basis functions are usually
not interpolating the control points. The physical mesh is a decomposition of the
geometry and can be divided into elements in two different ways; either divided it by
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Fig. 3. Different spaces in IGA  

The parent element is the constant area [−1, 1] × [−1, 1] and where 
numerical integration is performed. We map ξ and η in the parameter space 
to ξ̂ and η̂  in the parent element to make it easier to exploit Gaussian 
quadrature. The mapping from the parent element to the parameter space is 
given by:  

(6) 1 1
1 ˆ[( ) ( )]
2 i i i iξ ξ ξ ξ ξ ξ+ += − + − .  

(7)      1 1
1 ˆ[( ) ( )]
2 j j j jη η η η η η+ += − + − .            

3.3 Refinement techniques 

The B-Spline basis functions can be enriched by three different types of 
refinement techniques. These are knot insertion, degree elevation and k-
refinement. The first two techniques are equivalent to h- and p- refinement 
of FEM, respectively; the last one has no equivalent in standard FEM. It is to 
be noted, that after the refinement, the curve or surface remains same 
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Fig. 3. Different spaces in IGA.

patches or by knot spans. A patch can be thought of as a sub-domain. Patches are
curves in 1D, surfaces in 2D and volumes in 3D. Each patch can again be divided
into knot spans.

The control mesh is defined by the control points. The control mesh interpolates
all control points. It controls the geometry, but generally does not coincide with the
physical mesh. In 1D, the control elements are straight lines between two control
points. In 2D, the mesh consists of bi-linear quadrilaterals, defined by four control
points. In 3D, the control elements are tri-linear hexahedral, defined by eight control
points. The control variables are located at the control points and are the degrees of
freedom. Control meshes may be severely distorted, while the physical geometry still
remains well defined.

The parameter space is where the NURBS basis functions are defined and where
the local elements are given by the knots. The parameter space is local to patches.
Parameter space usually ranges from 0 to 1. The relation for the mapping between
physical mesh and parameter space is given in Eq. (4).

The parent element is the constant area [-1,1] × [-1,1] and where numerical in-
tegration is performed. We map ξ and η in the parameter space to ξ̂ and η̂ in the



Static Structural and Modal Analysis Using Isogeometric Analysis 43

parent element to make it easier to exploit Gaussian quadrature. The mapping from
the parent element to the parameter space is given by

ξ =
1

2
[(ξi+1 − ξi)ξ̂ + (ξi+1 − ξi)],

η =
1

2
[(ηj+1 − ηj)η̂ + (ηj+1 − ηj)].

(7)

3.2. REFINEMENT TECHNIQUES

The B-Spline basis functions can be enriched by three different types of refinement
techniques. These are knot insertion, degree elevation and k-refinement. The first
two techniques are equivalent to h- and p-refinement of FEM, respectively; the last
one has no equivalent in standard FEM. It is to be noted, that after the refinement, the
curve or surface remains same geometrically and parametrically.

KNOT INSERTION

This is similar to h-refinement. In this technique, additional knot is inserted in knot
vector, which results in an extra knot span. Knot values, which are present in the knot
vector, can also be repeated in this way, thereby increasing its multiplicity, but results
in reduced continuity of the basis functions. Since knot insertion splits existing ele-
ments into new ones, it is similar to h- refinement. However, it differs in the number
of new basis functions, that are created and also inter-element continuity.

DEGREE ELEVATION

This is equivalent to p-refinement. In this method, the degree of the basis function,
used for representing geometry is increased. Since the B-spline basis has Cp−m con-
tinuity between two elements, the multiplicity of the knots should also be increased
to preserve continuity in B-spline. So, in order elevation, the knot multiplicity value
is increased by one, but no new knot value is added. As with knot insertion, neither
the parameterization nor the geometry is changed.

K-REFINEMENT

A potentially more powerful type of refinement technique, which is unique to the
B-spline basis function is k- refinement. Basically, k-refinement is a degree elevation
strategy, which takes advantage of the fact that degree elevation and knot insertion
do not commute. In k-refinement, a unique knot value is added between two distinct
knot values in a B-spline curve of order p, and afterwards degree of B-spline is el-
evated to q. The reason for degree elevation from p to q is that the multiplicity of
every knot value is increased, so that discontinuity in the pth derivative of the basis
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functions is preserved. That is, the basis function still has p − 1 continuous deriva-
tives, even though the polynomial order is now q. The number of elements formed in
k-refinement is much less as compared to the p-refinement. Also, additional smooth-
ness in k-refinement is helpful in problems like free vibration of structures and bifur-
cation buckling of thin beams, plates and shells.

3.3. BOUNDARY CONDITIONS

As in finite element analysis, there are two types of boundary conditions: Dirichlet
boundary condition and Neumann boundary conditions. Boundary conditions im-
posed on primary unknown variable (Ex: deformation, temperature, etc.) are known
as Dirichlet boundary conditions. Neumann boundary conditions are imposed on the
derivative of primary variable (Ex: slope, heat flux, etc.). Boundary conditions of
the form u = 0 are called homogeneous Dirichlet boundary conditions, where u can
be any primary variable. These types of conditions are enforced by assigning the
corresponding control variables as zeros. Boundary conditions of the form u = u1

are called non-homogeneous Dirichlet boundary conditions. These conditions can be
also imposed by setting the corresponding control variables as u1. Assuming open
knot vectors, both types of Dirichlet boundary conditions can be satisfied if control
variables are at free end or at corner points due to the Kronecker delta property.

If the Dirichlet boundary conditions are to be imposed at any other point (other
than end points/ curves) of the domain, special techniques are used namely penalty
method, Lagrange multiplier method and least squares minimization. Alternative way
is to use h-refinement over the boundary of the domain over which Dirichlet bound-
ary condition is to be imposed. This method is simple to implement, but sometime
results in minor error because boundary conditions are satisfied partially. Imposition
of Neumann boundary condition in IGA is the same as in FEA, these conditions are
naturally satisfied in the weak form.

3.4. FLOWCHART

The flowchart of the conventional finite element code is shown in Fig. 4. An existing
finite element code can be converted to single-patch isogeometric analysis code by
slight modifications in the boxes shown in grey colour. Since, geometry is defined
with the use of NURBS, control points will be the input in place of nodes. The con-
nectivity information will change as NURBS basis functions differs from Lagrange’s
basis functions and very few basis functions are active in a given knot span. The
derivative of the NURBS basis functions depends on the Cox-de-Boor recursive for-
mula. Also, NURBS basis function are used for post-processing of the results.
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formula. Also, NURBS basis function are used for post-processing of the 
results.  

 
Fig.4.Flowchart of FEM code and its modification to suite IGA 

4 Static structural analysis 

In this section, static structural analysis of bar with self-weight and 2-
D plate under plane stress condition is solved. The basic procedure is 
explained step wise using corresponding MATLAB implementation. 

4.1 Bar with self-weight 

The problem of vertically hanging bar with self-weight is considered 
to explain Isogeometric analysis methodology for solving one dimensional 

12 
 

Fig. 4. Flowchart of FEM code and its modification to suite IGA.

4. STATIC STRUCTURAL ANALYSIS

In this section, static structural analysis of bar with self-weight and 2-D plate under
plane stress condition is solved. The basic procedure is explained step wise using
corresponding MATLAB implementation.

4.1. BAR WITH SELF-WEIGHT

The problem of vertically hanging bar with self-weight is considered to explain Isoge-
ometric analysis methodology for solving one dimensional problems. The governing
differential equation for the above problem is given by

d

dx

(
E(x)A(x)

du

dx

)
= ρg ,
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where E is Young’s modulus, A is the area of the cross section, ρ is the density of the
bar, g is the acceleration, due to gravity and u is the field variable. Young’s modulus,
cross sectional area and product of density and acceleration, due to gravity is taken
as unity. Since, the cross sectional area and Young’s modulus is constant (not varying
along the length), it can be taken out of the differential term.

In case of one dimensional problem the basis functions for finite element analysis
and Isogeometric analysis for linear elements are the same. To provide more clarity
on IGA methodology, the above problem is modelled using quadratic B-spline with
two knot spans. The B-spline data, used for solving the problem is given in Table 1.

Table 1. B-spline data for Bar problem

Degree of Basis function 2

Control Points (xi, yi) [0,0], [0.5,0], [1.5,0], [2,0]

Knot vector [0 0 0 0.5 1 1 1]

No. of knot spans 2

4.1.1. BASIS FUNCTION

The bar is modelled using B-spline curve of second degree with four control points
is given in Table 1, which results in two knot spans. B-spline basis functions are
calculated, using the recursive relations given in Eqs. (1) and (2). Matlab function
basisfun to find the basis functions of B-spline is presented in Appendix A. The input
for the function is order of the B-spline (p) and number of control points (n). The
output will be p+1 number of basis functions for each knot span. For the above case,

Fig. 5. IGA Basis functions Fig. 6. FEA Basis functions
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total of six quadratic basis functions are generated — three basis functions for each
of two knot spans, as given in Table 2. B-spline basis functions, calculated for two
knot spans are plotted in Fig. 5. To compare with the basis functions used in FEA,
three nodded quadratic basis functions for two elements are shown in Fig. 6.

Table 2. Basis functions for Bar problem

Knot span Basis functions

[0 0.5] N1 = (2ξ − 1)2, N2 = −2ξ (3ξ − 2), N3 = 2ξ2

[0.5 1] N4 = (2ξ − 2) (ξ − 1), N5 = −6ξ2 + 8ξ − 2, N6 = (2ξ − 1)
2

4.1.2. ELEMENT STIFFNESS MATRIX

The element stiffness matrix is calculated by solving the weak form of the governing
differential equation and considering the bilinear and linear form separately. The
weak form of the above mention problem is given by

(8) AE

xb∫
xa

(dw

dx

du

dx

)
dx−AEwdu

dx

∣∣∣xb
xa

=

xb∫
xa

(ρgw)dx,

where w is the weighing function. Now, considering the first term for finding the
element stiffness matrix

(9) ke = AE

xb∫
xa

(dw

dx

du

dx

)
dx .

The element stiffness matrix for the first knot span, i.e. [0 0.5] is calculated by
using first three B-spline basis functions (N1, N2 & N3). Let first basis function N1

be weighting function, then Eq. (9) becomes

(10) k11 = AE

0.5∫
0

(d(2ξ − 1)2

dx

(d(2ξ − 1)2

dx
u1 +

(−2ξ(3ξ − 2))

dx
u2 +

2ξ2

dx
u3

))
.

Since, B-Spline Basis functions are defined in parametric domain, Jacobian is to
be calculated to transform it from physical domain to parametric domain. A point on
the B-spline curve is represented by linear combination of basis functions and control
points

x = Nixi +Ni+1xi+1 + · · · ..+Np+1xP+1 .
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The first knot span consists of first three basis functions (N1, N2, N3) with the cor-
responding three control points (x1, x2, x3), so point any point on first knot span is
given by

(11) x = N1x1 +N2x2 +N3x3 .

Now, by differentiation

(12)
dx

dξ
=

dN1

dξ
x1 +

dN2

dξ
x2 +

dN3

dξ
x3 ,

upon substituting values of x1, x2 and x3, Eq. (12) becomes

(13) J1 =
dx

dξ
= 2 .

Also, by using partial derivative, it can be written as

(14)
dN

dx
=
∂N

∂ξ

∂ξ

∂x
=
∂N

∂ξ
J−1

1 .

Substituting these values in Eq. (10) and by integrating between limits [0, 0.5], it
gives

(15) k11 = 1.333u1 − u2 − 0.333u3 .

Similarly, by taking N2 and N3 as weight functions

k12 = −u1 + u2 ,(16)

k13 = −0.333u1 + 0.333u3 .(17)

By combining Eq. (15), Eq. (16) and Eq. (17), the element stiffness matrix for
the first knot span is given by

(18) k1 =

 1.333 −1 −0.333
−1 1 0
−0.333 0 0.333

 .
Similarly, element stiffness matrix for knot span [0.5 1] is given by

(19) k2 =

 0.333 0 −0.333
0 1 −1

−0.333 −1 1.333

 .
Matlab code element stiffness 1D is presented in Appendix B to find the element

stiffness matrix. The output of the code is a cell of size (cp,1) with each cell element
contains element stiffness matrix for a given knot span.
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4.1.3. ASSEMBLY OF GLOBAL STIFFNESS MATRIX

In finite element method, the continuity between the two elements is always C0,
i.e. point continuity between the elements. But in isogeometric analysis, Cp−m

continuity is maintained, where p is the degree of the B-spline and m is the multicity
of the knot. For example, let us consider a case of quadratic bar element. In FEA,
elements are C0 continuous, so two neighbouring elements share only one node as
shown in Fig. 7. But, in the case of IGA, elements are C1 continuous, thus two
neighbouring elements share two control points of each knot span, as shown in Fig. 8.

Fig. 7. FEA assembly. Fig. 8. IGA assembly.

Now for the case of bar, second and third control points are active in both first and
second element. The resultant global stiffness matrix for the bar is given by

(20) K =


1.333 −1 −0.333 0
−1 1.333 0 −0.333
−0.333 0 1.333 −1

0 −0.333 −1 1.333

 .
Matlab code global stiffness to calculate the global stiffness matrix from the ele-

ment stiffness matrix is mentioned in Appendix C. The inputs for the code are element
stiffness matrices in cell format, obtained from the previous code (element stiffness 1D).
The output will be the global stiffness matrix of size (n, n).

Similarly, the global load vector from the element force vectors is calculated. The
global load vector for this case is given by

(21) F =
[
0.333 0.667 0.667 0.333

]′
.

4.1.4. BOUNDARY CONDITION AND SOLUTION

Elimination method used in IGA for imposing the boundary conditions is the same as
in FEA. The columns and rows representing dofs of both global stiffness matrix and
global load vector are eliminated. The required field variable, i. e. displacement for
the bar is calculated by solving reduced global stiffness matrix and reduced global
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load vector. The system of linear equations is solved by using Matlab in-built com-
mand mldivide (\). The displacement vector, which consists of displacement values
at knots for the above mentioned bar problem is shown below:

(22) u =
[
0 1.0 2.0 2.0

]′
.

It is to be noted, that the solution vector U is not equal to nodal solution of FEM.
The way, control points define the curve along with basis function, though they them-
selves are not on the curve. The displacements values at knots define the curve (so-
lution). Hence, these may be interpreted as control points of the displacement curve.

For validation of IGA methodology, IGA results are compared with the exact so-
lution for displacement and stress, which are given by Eq. (23) and (24), respectively

u(x) =
ρg

E

(
Lx− x2

2

)
,(23)

σ(x) = ρg(L− x) .(24)

The same problem is solved using finite element method for comparison. The bar
is modelled using two quadratic elements and the nodal solution is given by

U =
[
0 0.875 1.5 1.875 2

]′
Displacement results, obtained from IGA and FEM with analytical solution are

plotted in Figs. 9 and 10, respectively. The stress developed in the bar for both cases
are shown in Figs. 11 and 12. It can be observed from the figures that the results
obtained from IGA for bar with self-weight is in a good agreement with that one of

Fig. 9. IGA displacement result. Fig. 10. FEA displacement result.
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Fig. 11. IGA stress result. Fig. 12. FEA stress result.

the exact solution. Also, it can be observed that two quadratic elements are required
in order to capture the results accurately using FEM. Two quadratic FEM elements
results in five nodes, which is one greater than that of IGA control points.

4.2. PLATE PROBLEM

To explain the case of two dimension problems in IGA, a square plate made up of
steel material (Young’s modulus of 210× 109 N/m2 and Poisson’s ratio is 0.33) with
unit length and breadth is taken under consideration. The traction force of 10 kN/m
is applied at both ends in x-direction. The plate is modelled by taking two linear
elements in both u and v directions. Since two linear elements are considered, three
control points are required along each parametric direction, which results in a total
nine control points. The B-spline surface data is mentioned in Table 3. The plate

Table 3. B-spline surface data

Degree of basis function in u direction 1

Degree of basis function in v direction 1

Control Points (xi, yi)
[0,0],[0.5,0], [1,0], [0,0.5], [0.5,0.5],

[1,0.5], [0,1], [0.5,1], [1,1]

Knot vector in u direction [0 0 0.5 1 1]

Knot vector in v direction [0 0 0.5 1 1]

No. of elements in u direction 2

No. of elements in v direction 2

Total no. of elements 4
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Fig. 13. Square plate problem. Fig. 14. Parameter space.

problem is shown in Fig. 13, corresponding parameter space of the plate with knots
is shown in Fig. 14.

4.2.1. BASIS FUNCTIONS

The plate is modelled as bilinear B-spline surface. There will be two set of basis
functions, one in ξ (Ni) and another in η (Mi) direction. The method to find the basis
functions for B-spline surface is similar to that of B-spline curve. But in 2-D case,
basis functions are calculated in two directions. Basis functions are evaluated with
the use of same Matlab function basisfun, as used in previous case. Basis functions
calculated for the plate problem are given in Table 4.

Table 4. Basis functions for B-spline surface

Knot span Basis functions

[0 0.5] N1 = 1− 2ξ, N2 = 2ξ, M1 = 1− 2η, M2 = 2η

[0.5 1] N3 = 2− 2ξ, N4 = 2η − 1, M3 = 2− 2η, M4 = 2η − 1

4.2.2. ELEMENT STIFFNESS MATRIX

The element stiffness matrix for two dimensional problems using theory of minimum
potential energy is calculated by

(25) ke =

∫
Ω

BTDBdΩ ,

where D is the elasticity matrix, which depends on the plane stress or plane strain
conditions and B is the strain-displacement matrix, which is given by
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(26) B =

Rx 0
0 Ry
Ry Rx

 ,
whereRx andRy are the derivatives of basis function with respect to x and y, respec-
tively. For example, R vector for the first element [(0 ≤ ξ < 0.5) & (0 ≤ η < 0.5)]
is given by below equation:

(27) R =
[
N1M1 N2M1 N1M2 N2M2

]
.

The domain of Gaussian points for the numerical integration is [-1, 1]. But the
parametric domain range is [0, 1]. So, the Gaussian points are mapped from par-
ent domain to the parametric domain for numerical integration. The relation for the
mapping is given by Eqs. (5) and (6).

If two point Gaussian numerical integration is considered, than the Gaussian
points are [-0.577 0.577] and weights are [1 1]. For first Gaussian point of first
element [(0 ≤ ξ < 0.5) & (0 ≤ η < 0.5)], ξ = −0.577 and η = −0.577, the cor-
responding point in parameter domain from Eqs. (5) and (6) is given by ξ = 0.3943
and η = 0.3943.

The Jacobian for the mapping of the derivatives from parent domain to the para-
metric domain is given by

(28)
∣∣∣Jξ,η∣∣∣ =

1

4
(ξi+1 − ξi)(ηj+1 − nj).

Using the above relation, Jacobian for the first element is

(29)
∣∣∣Jξ,η∣∣∣

1
=

1

4
(0.5− 0) (0.5− 0) = 0.0625 .

Next step is to find the derivative of basis functions with respect to two parameters
(ξ, η) at the Gaussian points. The derivative of basis function for first element with
respect to ξ and η is given by

[Rξ]1 =
[
4η − 2 2− 4η −4η 4η

]
,

[Rη]1 =
[
4ξ − 2 −4ξ 2− 4ξ 4ξ

]
.

The value of derivative at first Gaussian point [ξ = 0.3943η = 0.3943] for numerical
integration is given by

[Rξ]1 =
[
−0.4228 0.4228 −1.5772 1.5772

]
,

[Rη]1 =
[
−0.4228 0.4228 −1.5772 1.5772

]
.
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The derivatives calculated above are in parameter domain, but from Eq. (25) it can be
seen that the derivative of basis functions should be in physical domain. The Jacobian
for the mapping of the derivatives from parametric domain to the physical domain is
given by

x = N1M1x1 +N2M1x2 +N2M2x3 +N1M2x4,(30)
∂x

∂ξ
=

∂

∂ξ

[
N1M1 N2M1 N2M2 N1M2

] [
x1 x2 x3 x4

]′
,(31)

dx

dξ
= 1 ,

dx

dη
= 0 .(32)

Similarly,
dy

dξ
= 0,

dy

dη
= 1. Jacobian matrix for first knot span is given by

(33) [Jξ,η]1 =


dx

dξ

dx

dη
dy

dξ

dy

dη

 =

[
1 0
0 1

]
.

Now the derivatives of shape function, with respect to physical co-ordinates is
calculated by multiplying the inverse Jacobian to derivative of shape function with
respect to parametric domain.

Rx =
[
Rξ Rη

]
J−1
ξ,η ,(34)

[Rx]1 =
[
−0.4228 0.4228 −1.5772 1.5772

]
,

[Ry]1 =
[
−0.4228 0.4228 −1.5772 1.5772

]
.

So, the strain displacement matrix for the first element of the plate is given by

Be =

[R1]x [R2]x [R3]x [R4]x 0 0 0 0
0 0 0 0 [R1]y [R2]y [R3]y [R4]y

[R1]y [R2]y [R3]y [R4]y [R1]x [R2]x [R3]x [R4]x

 ,

B1 =

−0.4228 0.4228 −1.5772 1.5772 0 0 0 0
0 0 0 0 −0.4228 −1.5772 0.4228 1.5772

−0.4228 −0.4228 −1.5772 0.4228 0.4228 −1.5772 1.5772 1.5772

 .

(35)

The elasticity matrix for a plate under plane stress is given by

(36) C =
E

(1− ν2)

1 v 0
v 1 0
0 0 (1− v)/2

 ,
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where ν is the Poison’s ratio, which is taken as 0.33. The element stiffness matrix
is calculated by substituting the value of elasticity matrix and strain-displacement
matrix in Eq. (25), which is given by

(37) ke = B′CB |Jξ,η|
∣∣∣Jξ,η∣∣∣wt ,

where wt is the weight of the Gaussian point, which is considered one for all points.
Matlab code element stiffness 2D to find the element stiffness matrix for two dimen-
sional using IGA is mentioned in Appendix D. The output of the code for the above
mentioned plate problem is the cell of size (4, 1), each cell element contains element
stiffness matrix for the corresponding element.

To compute the load vector, a boundary mesh is defined over which a traction is
applied. Boundary mesh for this case consists of two linear elements. Element load
vector under traction is given by relation in

(38) fe =

∫
Γ

N ′tdΓ ,

where t is the traction force, which is taken as 10 kN/m applied over the right edge.
Numerical integration over the line integral is calculated by using three Gaussian
points. The values of Gaussian points and their associate weights are

[
Points Weights

]
=

 0.7746 0.5556
−0.7746 0.5556

0 0.5556

 .
4.2.3. ASSEMBLY OF GLOBAL STIFFNESS MATRIX

The procedure used for stepped bar problem can be extended to two dimensional
case. The control mesh with corresponding element number of the square plate is

4.1.3 Assembly of global stiffness matrix  

The procedure used for stepped bar problem can be extended to two 
dimensional case. The control mesh with corresponding element number of 
the square plate is shown in Fig. 15. Each linear element matrix will have 
active set of four control points and each control point has two degrees of 
freedom (translation in x and y directions) as mentioned in Table 5. The first 
four degrees of freedom are along x direction and remaining four along y 
direction.  The global stiffness matrix will be of the size (2n, 2n). Same 
Matlab code global_stiffness with integration of element connectivity table 
can be used for the assembly process. 

 
Fig.15. Control mesh of square plate 

Table 5: Connectivity table 

Element no Connectivity Dofs 

1 [1 2 4 5] [1 2 4 5 10 11 13 14] 
2 [2 3 5 6] [2 3 5 6 11 12 14 15] 
3 [4 5 7 8] [4 5 7 8 13 14 16 17] 
4 [5 6 8 9] [5 6 8 9 14 15 17 18] 

4.2.4 Solution 

The unknown variables to be calculated in this problem are 
displacement in x and y directions. Since left edge of the square plate is 
fixed, homogenous Dirichlet boundary condition is imposed. As mentioned 

24 
 

Fig. 15. Control mesh of square plate.
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shown in Fig. 15. Each linear element matrix will have active set of four control
points and each control point has two degrees of freedom (translation in x and y
directions) as mentioned in Table 5. The first four degrees of freedom are along x
direction and remaining four along y direction. The global stiffness matrix will be
of the size (2n, 2n). Same Matlab code global stiffness with integration of element
connectivity table can be used for the assembly process.

Table 5. Connectivity table

Element No. Connectivity Dofs

1 [1 2 4 5] [1 2 4 5 10 11 13 14]

2 [2 3 5 6] [2 3 5 6 11 12 14 15]

3 [4 5 7 8] [4 5 7 8 13 14 16 17]

4 [5 6 8 9] [5 6 8 9 14 15 17 18]

4.2.4. SOLUTION

The unknown variables to be calculated in this problem are displacement in x and
y directions. Since left edge of the square plate is fixed, homogenous Dirichlet
boundary condition is imposed. As mentioned earlier in section 3, imposition of
homogenous Dirichlet boundary condition is similar to FEA and easy to impose. In
the present case, rows and columns of global stiffness matrix representing degree of
freedoms of left edge of the plate are eliminated. Similarly, the rows of fixed degree
of freedom of the global load vector are eliminated. The required solution is obtained
by solving a set of linear equations obtained from reduced global stiffness matrix and
reduced global load vector.

Fig. 16. Displacement in x direction. Fig. 17. Displacement in y direction.
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The displacement in the plate along x and y direction are shown in Fig. 16 and
Fig. 17, respectively. The maximum displacement of the plate in x direction is 9.2×
10−8 m and in y direction it is -1.5× 10−8 m.

5. STRUCTURAL VIBRATION ANALYSIS

In this section, structural vibration problem of bar and beam are solved. The basic
procedure is explained in steps using corresponding Matlab implementation.

5.1. NATURAL VIBRATION OF BAR

A bar of unit length which is fixed at both ends is considered to explain isogeometric
analysis methodology. Material properties of the bar are assumed to be unity. First
analytical solution is provided for the defined case. Results obtained from analytical
solution and IGA solution are compared.

5.1.1. ANALYTICAL SOLUTION

The natural frequencies and modes are governed by

(39) Mẍ+Kx = 0 ,

where M and K are mass and stiffness matrices, respectively, x is the displacement
vector and ẍ is the acceleration vector. The general solution for the defined problem
is given by

(40) x = φne
iωnt ,

where ωn is the nth natural frequency. Substituting the value of x from Eq. (39) into
Eq. (40), we will get

(41) (K − ω2
nM)φn = 0 .

The bar is fixed at both the ends, i.e. x(0) = x(1) = 0. The exact solution for
these conditions in terms of natural frequencies is

(42) ωn = nπ , where n = 1, 2, 3, . . .

5.1.2. BASIS FUNCTION

The bar is modelled with the use of quadratic B-Spline basis functions with equi-
spaced control points. B-Spline basis functions are calculated by using recursive
functions given in Eqs. (1) and (2). Matlab function basisfun is used to find B-Spline
basis functions. In order to understand the problem more precisely, a bar with three
knot spans is taken. Related data is presented in Table 6.

Basis functions for each knot span are presented in Table 7.
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Table 6. B-Spline Data for Bar problem

Degree of B-spline 3

Number of elements 3

Knot vector [0 0 0 0.333 0.667 1 1 1]

Control Points (xi, yi) [0, 0], [0.25, 0], [0.5, 0], [0.75, 0], [1,0]

Table 7. B-Spline basis function for Bar problem

Knot span Basis function

[0 0.333] N1 = (3ξ − 1)2, N2 =
−(3ξ(9ξ − 4))

2
, N3 =

9ξ2

2

[0.333 0.667] N4 =
(3ξ − 2)2

2
, N5 =

−(3(6ξ2 − 6ξ + 1))

2
, N6 =

(3ξ − 1)2

2

[0.667 1] N7 =
(3ξ − 3)2

2
, N8 =

−(3(9ξ − 5)(ξ − 1))

2
, N9 = (3ξ − 2)2

5.1.3. ELEMENT STIFFNESS MATRIX

Same procedure to find element stiffness matrix is used as mentioned in bar with self-
weight problem. The Jacobian for mapping the derivatives from parametric domain
to physical domain is given by

(43) J1 =
∂x

∂ξ
=

3

2
− 9ξ

4
.

Now, by using partial derivative it can be written as

(44)
∂N

∂x
=
∂N

∂ξ

∂ξ

∂x
=
∂N

∂ξ

(3

2
− 9u

4

)−1
.

On substituting the Jacobian and derivative value in Eq. (9), element stiffness
matrix for first knot span is calculated (Appendix B)

(45) K1 = EA

 3.0904 −2.1807 −0.9096
−2.1807 2.3614 −0.1807
−0.9096 −0.1807 1.0904

 .
Similarly, stiffness matrix for second and third element are

K2 = EA

1.3333 −0.667 −0.667
−0.667 1.3333 −0.667
−0.667 −0.667 1.3333

 ,
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K3 = EA

 1.0904 −0.1807 −0.9096
−0.1807 2.3614 −2.1807
−0.9096 −2.1807 3.0904

 .
5.1.4. GLOBAL STIFFNESS MATRIX

Assembly of global stiffness matrix is similar as that of static analysis. The global
stiffness is calculated using Matlab code global stiffness which is given in Appendix
C,

K = EA


3.0904 −2.1807 −0.9096 0 0
−2.1807 3.6948 −0.8474 −0.667 0
−0.9096 −0.8474 3.514 −0.8474 −0.9096

0 −0.667 −0.8474 3.6948 −2.1807
0 0 −0.9096 −2.1807 3.0904

 .
5.1.5. ELEMENT MASS MATRIX

The relation of element mass matrix for an element is given by

(46) M =

1∫
0

[N ]T [N ] ρAdx .

On substituting values of basis functions in Eq. (46), we get the mass terms for
various elements as follows:

M1 = ρA

11/120 23/480 1/160
23/480 47/480 1/32
1/160 1/32 7/480

 , M2 = ρA

 1/80 13/480 1/480
13/480 9/80 13/480
1/480 13/480 1/80

 ,
M3 = ρA

7/480 1/32 1/160
1/32 47/480 23/480
1/160 23/480 11/120

 .
5.1.6. GLOBAL MASS MATRIX

Assembly of global mass matrix is obtained in the same manner as that of global
stiffness matrix (appendix C) which is given by

M = ρA


0.0917 0.0479 0.0063 0 0
0.0479 0.1104 0.0583 0.0021 0
0.0063 0.0583 0.1417 0.0583 0.0063

0 0.0021 0.0583 0.1104 0.0479
0 0 0.0063 0.0479 0.0917

 .
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5.1.7. SOLUTION

The required solution is obtained by substituting the global element stiffness matrix
and mass matrix in Eq. (41). Elimination method is used to impose boundary condi-
tions. Application of boundary conditions results in an Eigen value problem. The so-
lution of Eigen value problem is ω1 = 3.143 Hz, ω2 = 6.345 Hz, ω3 = 10.1015 Hz,
which matches with analytical results (ω1 = π, ω2 = 2π, ω3 = 3π). In order to
further refine the solution, number of elements is increased to 100. Ratio of the nat-
ural frequencies from analytical and IGA solution are plotted against the number of
element (appendix E). It is evident from Fig. 18 that more than half of the modal
frequencies are equal to those obtained analytically. Moreover, the rest of the fre-
quencies’ error is found to be less than 7%.

 
Fig. 18. Natural frequencies ratio against element number 

5.2.2. Basis function 

The beam is modelled with a cubic B-Spline basis function having 
equi-spaced control points. B-Spline basis functions are calculated by using 
recursive functions, given in Eqs (1) and (2). Basis functions are calculated 
with the use of Matlab function (appendix 7.1). In order to provide more 
insight on the topic, a beam of three elements is considered and modal 
frequencies are calculated with the help of isogeometric methodology. 
Related information is provided in Table 8. 
 

Table 8: B-Spline data for Beam problem 
Degree of B-spline 4 

Number of knot spans 3 
Knot vector [0 0 0 0 0.333 0.667 1 1 1 1] 

Control Points (xi, yi) [0, 0], [0.2, 0], [0.4, 0], [0.6, 0], [0.8, 0], [1, 0] 
 

Basis functions are generated using Matlab function basisfun 
(appendix 7.1) from above mentioned B-spline data and are given in Table 9. 

 
Table 9: B-Spline basis function for Beam problem 

Knot span Basis function 
 

[0 0.333] 
3
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Fig. 18. Natural frequencies ratio against element number.

5.2. NATURAL VIBRATION OF BEAM

A beam fixed at both ends of unit length is considered to find natural modes of vi-
bration, using isogeometric analysis. All material properties are considered to be
unity. In finite element method, each node has two degrees of freedom i. e. slope
and deflection but in isogeometric method each control point has only one degree of
freedom. There is no slope in isogeometric methodology. That is the reason for beam
to be called rotation free beam.

5.2.1. ANALYTICAL SOLUTION

The governing equation for finding the natural modes of vibration is as follows:

(47) x− ω2x = 0 .
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In terms of stiffness and mass, the equation will be

(48) K − ω2M = 0 .

Boundary conditions are x(0) = x(1) = 0. Upon imposition of boundary condi-
tions, exact solution in terms of frequencies will be as follows:

(49) ωn = (nπ)2, where n = 1, 2, 3, . . .

5.2.2. BASIS FUNCTION

The beam is modelled with a cubic B-Spline basis function having equi-spaced con-
trol points. B-Spline basis functions are calculated by using recursive functions,
given in Eqs. (1) and (2). Basis functions are calculated with the use of Matlab
function (appendix 7.1). In order to provide more insight on the topic, a beam of
three elements is considered and modal frequencies are calculated with the help of
isogeometric methodology. Related information is provided in Table 8.

Table 8. B-Spline data for Beam problem

Degree of B-spline 4

Number of knot spans 3

Knot vector [0 0 0 0 0.333 0.667 1 1 1 1]

Control Points (xi, yi) [0, 0], [0.2, 0], [0.4, 0], [0.6, 0], [0.8, 0], [1, 0]

Basis functions are generated using Matlab function basisfun (appendix 7.1) from
above mentioned B-spline data and are given in Table 9.

Table 9. B-Spline basis function for Beam problem

Knot span Basis function

[0 0.333] N1 = (1− 3ξ)3, N2 = [(9ξ(21ξ2 − 18ξ + 4))]/4,
N3 = [−(9ξ2(11ξ − 6))]/4, N4 = 9ξ3/2

[0.333 0.667] N5 = [−(3ξ − 2)3]/4, N6 = [3(21ξ3 − 36ξ2 + 18ξ − 2)]/4,
N7 = [−3(21ξ3 − 27ξ2 + 9ξ − 1)]/4, N8 = [(3ξ − 1)3]/4

[0.667 1] N9 = [−(3ξ − 3)2(ξ − 1)]/2, N10 = [9(11ξ − 5)(ξ − 1)2]/4,
N11 = [−9(ξ − 1)(21ξ2 − 24ξ + 7)]/4, N12 = (3ξ − 2)3
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5.2.3. ELEMENT STIFFNESS MATRIX

The stiffness matrix is calculated with the use of minimum potential energy method.
In case of beam, strain is given by

(50) ∈= −y∂
2V

∂x2
,

where V is the vertical deflection, which is given by

(51) V = N1v1 +N2v2 +N3v3 +N4v4 = [N ]{ve},

where {ve} is deflection vector and strain energy is given by

(52) SE =
1

2
{ve}

∫ (
−y∂

2N

∂x2

)T
E

(
−y∂

2N

∂x2

)
Adx {ve} .

Since, y2A is moment of inertia, i.e. I , Eq. (52) can be re-written as

(53) SE =
1

2
{ve}

∫ (
∂2N

∂x2

)T (
∂2N

∂x2

)
EIdx {ve},

and stiffness matrix is given by

(54) K = EI

1∫
0

(
∂2N

∂x2

)T (
∂2N

∂x2

)
dx .

Since, B-Spline Basis functions are defined in parametric domain, Jacobian is to
be calculated to transform it from physical domain to parametric domain. For that,
displacement vector is given as

x = N1x1 +N2x2 +N3x3 +N4x4 ,(55)

∂x

∂ξ
=

9(15ξ2 − 12ξ + 4)

20
.(56)

Now by using partial derivation

(57)
∂N

∂x
=
∂N

∂ξ
=
∂N

∂ξ

(
9(15ξ2 − 12ξ + 4)

20

)−1

,

by substituting above value in Eq. (54), stiffness matrix is given by

K1 = EI


70.93 −116.62 20.45 25.24
−116.62 205.03 −60.20 −28.20

20.45 −60.20 59.05 −19.30
25.24 −28.21 −19.30 22.27

 .



Static Structural and Modal Analysis Using Isogeometric Analysis 63

Similarly, stiffness matrices for remaining knot spans are given by

K2 = EI


48.71 −67.76 −10.60 29.65
−67.76 124.93 −46.56 −10.60
−10.60 −46.56 124.93 −67.7642
29.65 −10.60 −67.76 48.71

 ,

K3 = EI


22.27 −19.30 −28.21 25.24
−19.30 59.05 −60.20 20.45
−28.21 −60.20 205.02 −116.62
25.24 20.45 −116.62 70.93

 .
5.2.4. ASSEMBLY OF GLOBAL STIFFNESS MATRIX

Same procedure is followed for assembly of stiffness matrix for beam as that of bar
problem. Matlab function global stiffness is used for the assembly (appendix 7.3)

K = EI



70.93 −116.62 20.45 25.24 0 0
−116.62 253.74 −127.96 −38.81 29.65 0

20.45 −127.96 206.25 −85.16 −38.81 25.23
25.24 −38.81 −85.16 206.25 −127.96 20.45

0 29.65 −38.81 −127.96 253.74 −116.62
0 0 25.24 20.45 −116.62 70.93

 .

5.2.5. ELEMENT MASS MATRIX

The mass matrix for beam knot span will be the same as that of bar. Hence, in order
to obtain mass matrix the following equation is used

(58) M = ρA

1∫
0

[N ]T [N ] dx .

By substituting the value of basis functions in Eq. (58), mass matrices for three
knot spans are given by

M1 = ρA


0.07 0.04 0.007 0.0004
0.04 0.07 0.038 0.005
0.007 0.038 0.032 0.0055
0.0004 0.005 0.0055 0.001

 ,

M2 = ρA


0.0021 0.0084 0.0041 0.0001
0.0084 0.049 0.04 0.004
0.0041 0.04 0.049 0.0084
0.0001 0.004 0.0084 0.0021

 ,
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M3 = ρA


0.001 0.0055 0.0049 0.0004
0.0055 0.032 0.038 0.0075
0.0049 0.038 0.0789 0.04
0.0004 0.0075 0.04 0.076

 .
5.2.6. ASSEMBLY OF GLOBAL MASS MATRIX

The procedure of assembly of global mass matrix is the same as that of global stiff-
ness matrix (Appendix 7.3). Global mass matrix obtained is as follows:

M = ρA



0.076 0.04 0.0075 0.0004 0 0
0.04 0.0811 0.0472 0.0091 0.0001 0

0.0075 0.0472 0.0827 0.0511 0.0091 0.0004
0.0004 0.0091 0.0511 0.0827 0.0472 0.0075

0 0.0001 0.0091 0.0472 0.0811 0.04
0 0 0.0004 0.0075 0.04 0.076

 .

5.2.7. SOLUTION

Required solution is obtained by substituting stiffness and mass matrix in Eq. (48).
Elimination approach is used to impose boundary conditions. The natural frequen-
cies obtained by the isogeometric methodology are w1 = 9.94 Hz, w2 = 40.079 Hz,
w3 = 92.466 and w4 = 180.042, which satisfy the analytical solution. In order to
refine the solution, number of element is increased to 99. Ratio of the natural fre-
quencies from analytical and IGA solution are plotted against the number of element
than half of the modal frequencies are equal to those obtained with the help 
of analytical solution and even for the rest of the frequencies’ error is less 
than 12%.  
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is plotted against the number of element (appendix 7.6). It can be seen in Fig. 19, that
more than half of the modal frequencies are equal to those obtained with the help of
analytical solution and even for the rest of the frequencies’ error is less than 12%.

6. CONCLUDING REMARKS

NURBS is the predominant modelling technique used in most of the CAD pack-
ages. B-spline basis function has unique properties like local support, exact geome-
try representation, refinement techniques, etc. these are the reasons of its widespread
use. Isogeometric analysis is the new analysis framework, which makes use of these
NURBS properties. The idea is to use a single description of computational domain
for both geometry and field variable representation to facilitate integration of CAD
and CAA industries. From the past one decade, IGA has shown a lot of potential
to become future alternative to FEM. In this paper, IGA methodology for the static
structural and vibration cases is presented. Detailed calculation of each step with
corresponding MATLAB implementation is given. It is observed (Ex: bar with self-
weight problem) that the displacement solution obtained from IGA is equivalent to
control points of B-spline displacement curve. Also, IGA gives better solution per de-
gree of freedom than FEM. Differences of IGA with conventional FEM formulation
are also presented in this paper.

Apart from IGA being superior to FEM in many aspects, it has some disadvan-
tages of its own. Since, isogeometric analysis is a NURBS based method, analysts
must require a lot of CAD knowledge. Multi-patch B-spline modelling of intricate
shapes is a very difficult task. In IGA, exact Dirichlet boundary condition cannot be
imposed on interior of the domain. Irrespective of the degree of the basis function
and number of elements, the FEM solution at nodes always gives exact solution. But,
that’s not the case in IGA, because of non-interpolation of B-spline control points.
Isogeometric analysis is computationally expensive as compared to FEM for simple
one dimensional case.

Isogeometric analysis, being a new analysis technique with lot of advantages, has
immense scope in the future. From literature it can be observed that, IGA is applied
to relatively simple geometries, it can be applied on complex multi-patch geometries
for engineering analysis. Available analysis software use different information of
geometry for design and analysis. Further research can be pursued is of integrating
isogeometric analysis with CAD systems and hence, avoiding meshing problems re-
lated to FEM. Applying isogeometric analysis to contact problems as these problems
require smooth representation of surfaces. Also, finding an optimum set of control
points for fitting a B-spline model, which gives better IGA result, is still an open
problem.
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APPENDIX A. basisfun

function N = basisfun(k,cp)
% Input
% P=input(’Order of the B-spline’)
% n=input(’No of control points’)
%Output
% b= Symbolic basis function in u.
% each knot span contains P+1 no of basis functions in cell format.
t=knotseq(cp,k-1);
[q,p]=size (t);
r=k;
v=(t(1,r)+t(1,r+1))/2;
c=cell(n+1,k);e=cell(n+1,1);
syms u;
a=1;b=1;
while r<p-(k-1)
for j=1:k
for i=1:(n+1)
if j==1
if v>=t(1,i)&& v<t(1,i+1)

c{i,j}=1;
else

c{i,j}=0;
end
else

y=0;
dn1=u-t(1,i);
dd1=t(1,i+j-1)-t(1,i);

if dd1 ∼ = 0
y=c{i,j-1}.*(dn1/dd1);

end
dn2=t(1,i+j)-u;
dd2=t(1,i+j)-t(1,i+1);

if dd2 ∼= 0
y=y+c{i+1,j-1}.*(dn2/dd2);

end
c{i,j}=y;

end
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end
end
for ad=0:k-1

e{a+ad,1}=c{b+ad,k};
end

a=a+k;
b=b+1;
r=r+1;
v=(t(1,r)+t(1,r+1))/2;

end
e=reshape(e,k,k)’;

end

APPENDIX B. element stiffness 1D

n=input(’no of control points’);
k=input(’order of the B-spline’);
cpx=input(’control points in x-direction’);
E=input(’Youngs Modulus vector’);
A=input(’cross sectional area vector’);
N=basisfun garvit(k,n);
P=k-1;
uniquekntspan=unique(knotseq(n,P));
noel=length(uniquekntspan)-1;
ke=cell(noel,1);
for i=1:noel

cpx1=cpx(i:i+P);
x=0;

for j=1:k
dummy=N{i,j}*cpx1(j);
x=dummy+x;

end
jacob=diff(x);
dummy1=zeros(k);

for j=1:k
for j1=1:k
dummy1(j,j1)= E(i)*A(i)*int(diff(N{i,j})*diff(N{i,j1})/jacob,
uniquekntspan(i),uniquekntspan(i+1));
end
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end
ke{i}=double(dummy1);

end

APPENDIX C. global stiffness

K=zeros(n);
dummy=zeros(n);
for i=1:noel

dummy([i:i+k-1],[i:i+k-1])=double(ke{i});
K=dummy+K;
dummy=zeros(n);

end

APPENDIX D. element stiffness 2D

clear all
clc
disp(’2D problem’)
nxx=input(’cord of control points in x direction: ’);
nx=input(’no of control points in x direction: ’);
nyy=input(’cord of control points in y direction: ’);
ny=input(’no of control points in y direction: ’);
conx=input(’Connectivity table’);
p=input(’degree of basis function in u direction: ’);
q=input(’degree of basis function in v direction: ’);
E=input(’youngs modulus: ’);
nu=input(’value of poisoons ratio: ’);
stresstate=input(’1 for planestress,2 for plainstrain’);
if stresstate==1

C=(E/(1-nuˆ2))*[1 nu 0;nu 1 0; 0 0 (1-nu)/2];
elseif stresstate==2

C=(E/((1+nu)*(1-2*nu)))*[1-nu nu 0;nu 1-nu 0;0 0 1/(2-nu)];
end
% finding knot vector
[U,nonrep1]=knotseq(nx,p);
[V,nonrep2]=knotseq(ny,q);
nel=(length(nonrep1)-1)*(length(nonrep2)-1);
noctl=nx*ny;
nodof=2*noctl;
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[g,wt] = gausp(r);
jac=zeros(2);ke=zeros(8);
k=cell(nel,1);
kg=zeros(nx*ny*2);
dummy=zeros(nx*ny*2);
for i=1:nel

for a=1:length(nonrep1)-1
for b=1:length(nonrep2)-1

for j=1:2
for jjj=1:2

gpu=((nonrep1(a+1)+nonrep1(a))/2)+(((nonrep1(a+1)-
nonrep1(a))/2)*g(j));

gpv=((nonrep2(b+1)+nonrep2(b))/2)+(((nonrep2(b+1)-
nonrep2(b))/2)*g(jjj));

J1=0.25*(nonrep1(a+1)-nonrep1(a))*(nonrep2(b+1)-
nonrep2(b));

dersu = Der1BasisFun(findspan(nx,p,gpu,U) ,gpu,p,U);
dersv = Der1BasisFun(findspan(ny,q,gpv,V) ,gpv,q,V);
qq=1;
for bb=1:length(dersv(1,:))

for aa=1:length(dersu(1,:))
dRdu(1,qq)=dersu(2,aa)*dersv(1,bb);
dRdv(1,qq)=dersv(2,bb)*dersu(1,aa);
qq=qq+1;
end

end
cpx=nxx(conx(i,:));
cpy=nyy(conx(i,:));
jac(1)=dRdu*cpx’;
jac(4)=dRdv*cpy’;
J2=det(jac);
nn=length(dersu(1,:))*length(dersv(1,:));
B=zeros(3,2*nn);
dRdx=[dRdu;dRdv]’*inv(jac);
B(1,1:nn)=dRdx(:,1)’;
B(2,nn+1:2*nn)=dRdx(:,2)’;
B(3,1:nn)=dRdx(:,2)’;
B(3,nn+1:2*nn)=dRdx(:,1)’;
ke=ke+ J2*J1*B’*C*B;
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end
end

end
end

k{i}=ke;
end

APPENDIX E. Natural Vibration of bar

clear
clc
syms u
nel=input(’Enter the number of elements’)
p=1;
k=3;
s=1/(nel+k-2);%difference between two control points
nv=1/(2*nel);
% finding control points
for i=0:s:1

f(p,1)=i;
p=p+1;

end
h=nel-1+2*k;
z=h-k;
% finding the knot vector
for i=1:h
if i<=k
t(1,i)=0;
elseif i>z
t(1,i)=1;
else
t(1,i)=(i-k)*2*nv;
end
end
%finding basis functions
g=cell(k*nel,1);
g=basisfun(p,k);
% Calculating global stiffness and global mass matrix
dummy1=zeros(nel+k-1);
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dummy2=zeros(nel+k-1);
KT=zeros(nel+k-1);
MT=zeros(nel+k-1);
j=1;
o=1;
q=0;
v=2*nv;
for i=1:nel

N1(u)=g{o,1};
N2(u)=g{o+1,1};
N3(u)=g{o+2,1};
du1=diff(N1)*f(j,1)+diff(N2)*f(j+1,1)+diff(N3)*f(j+2,1);
n1=[N1 N2 N3];
B1=diff(n1)/du1;
k1=B1’*B1;
k1=k1*du1;
Ke1=int(k1,q,q+v);
Ke1=double(Ke1(u));
m1=n1’*n1;
m1=m1*du1;
Me1=int(m1,q,q+v);
j=j+1;
o=o+3;
q=q+v;
dummy1([i:i+2],[i:i+2])=Ke1;
KT=KT+dummy1;
dummy1=zeros(nel+k-1);
dummy2([i:i+2],[i:i+2])=Me1(u);
MT=MT+dummy2;
dummy2=zeros(nel+k-1);

end
% applying boundary conditions and finding natural frequencies
w1=eig(KT(2:end-1,2:end-1),MT(2:end-1,2:end-1));
nw1=sqrt(w1);
% for plotting the ratio frequencies to element number
for i=1:nel

na1(i,1)=nw1(i,1)/(i*pi);
el(i,1)=i/(nel);

end
plot(el,na1,’k’)
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APPENDIX F. Natural vibration of beam

%give frequencies of fixed beam
clear
clc
syms u
nel=input(’Enter the number of elements’)
p=1;
k=4;
s=1/(nel+k-2);%difference between two control points
nv=1/(2*nel);
% finding control points
for i=0:s:1

f(p,1)=i;
p=p+1;

end
h=nel-1+2*k;
z=h-k;
% finding the knot vector
for i=1:h
if i<=k

t(1,i)=0;
elseif i>z

t(1,i)=1;
else

t(1,i)=(i-k)*2*nv;
end
end
%finding basis functions
g=cell(k*nel,1);
g=basisfun(p,k);
% Calculating global stiffness and global mass matrix
dummy1=zeros(nel+k-1);
dummy2=zeros(nel+k-1);
KT=zeros(nel+k-1);
MT=zeros(nel+k-1);
j=1;o=1;q=0;v=2*nv;
for i=1:nel

N1(u)=g{o,1};
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N2(u)=g{o+1,1};
N3(u)=g{o+2,1};
N4(u)=g{o+3,1};

du1=diff(N1)*f(j,1)+diff(N2)*f(j+1,1)+diff(N3)*f(j+2,1)+diff(N4)*f(j+3,1);
n1=[N1 N2 N3 N4];
Bh1=diff(n1)/du1;
B1=diff(Bh1)/du1;
k1=B1’*B1;
k1=k1*du1;
Ke1=int(k1,q,q+v);
Ke1=double(Ke1(u));
m1=n1’*n1;
m1=m1*du1;
Me1=int(m1,q,q+v);
Me1=double(Me1(u));
j=j+1;
o=o+4;
q=q+v;
dummy1([i:i+3],[i:i+3])=Ke1;
KT=KT+dummy1;
dummy1=zeros(nel+k-1);
dummy2([i:i+3],[i:i+3])=Me1;
MT=MT+dummy2;
dummy2=zeros(nel+k-1);

end
% applying boundary conditions and finding natural frequencies
w1=eig(KT(2:end-1,2:end-1),MT(2:end-1,2:end-1));
nw1=sqrt(w1);
% for plotting the ratio frequencies to element number
for i=1:nel+1

na1(i,1)=nw1(i,1)/(i*pi)ˆ2;
el(i,1)=i/(nel+1);

end
plot(el,na1,’k’)
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