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ABSTRACT: The present work presents a new approach based on neural net-
work prediction for simple and fast estimation of the creep plastic behaviour of
the short fiber composites. Also, this approach is proposed to reduce the solu-
tion procedure. Moreover, as a significant application of the method, shuttles
and spaceships, turbine blades and discs are generally subjected to the creep
effects. Consequently, analysis of the creep phenomenon is required and vital
in different industries. Analysis of the creep behaviour is required for failure,
fracture, fatigue, and creep resistance of the optoelectronic/photonic compos-
ites, and sensors. One of the main applications of the present work is in design-
ing the composites with optical fibers and devices. At last, a good agreement is
seen among the present prediction by neural network approach, finite element
method (FEM), and the experimental results.

KEY WORDS: Artificial neural networks, creep, metal matrix composites (MMCs).

1. INTRODUCTION

Recently, application of the neural networks (NNs) represents a novel approach in
various applications. Neural network approach is a promising insight for research in
predicting analytical, numerical, and experimental trends and behaviours. Also, it has
been become increasingly popular in the recent years. Neural networks (NNs) may
often solve the problems much faster compared to other methods with the additional
ability to learn. Application of the optical devices and optoelectronic composites is
recently growing, because of their applications in different industries.

So, a comprehensive study on the plastic behaviour of the materials is vital and
significant, because, the plastic phenomenon like creep in the sensors and optoelec-
tronic systems (devices), and optical fibers can be very dangerous. The creep (plastic
deformations) in the mentioned systems may create the serious errors and distur-
bances in the advanced systems. The increasing application of the optical fibers in
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the optoelectronic composites requires a methodical knowledge of their creep char-
acteristics, creep resistances, and deformation mechanisms.

Newly, the creep deformations of the short fiber composites with optical fibers are
studied in the scientific societies and various industries. Consequently, creep analysis
is more important in the related industries. In a word, the creep phenomenon may be
dangerous and undesirable for the sensors and optical devices.

Many researchers have studied the 2nd stage creep behaviour by analytical, exper-
imental, and finite element (FE) methods. Finite element method (FEM) is the one of
the physically powerful methods for modelling the creep problems [1-3]. For exam-
ple, the creep deformation behaviour of the metal-matrix composites has been studied
by a continuum mechanics treatment, using finite element techniques by Dragon and
Nix [1].

In addition, highly developed analytical shear-lag model, applicable to discontin-
uous fiber composites has been presented [4-8]. For instance, Cox [4] proposed a
stress transfer mechanism in the unidirectional long or short fiber composites, which
is known as the shear lag model. Moreover, the creep of dispersion reinforced alu-
minium based metal matrix composite has been investigated experimentally [9-11].
The creep rupture of a silicon-carbide reinforced aluminium composite was studied
by Nieh [9]. The 2nd stage creep analysis of silicon carbide whisker/6061 aluminium
composite was experimentally performed by Morimoto et al. [10].

As important application and relation of optics and creep, piezoelectric actuators
were studied as embedded elements for the quasi-statically active shape control of
spatial optical mirrors, because of their excellent properties [12]. Recently, interest-
ing and applied studies have been carried out on creep behaviour and phenomenon
[13-15]. For example, the creep properties of three Sn–Zn solder alloys have been in-
vestigated, utilizing the impression creep technique, in which, micro structural char-
acteristics were inspected employing a scanning electron microscope [14]. Recently,
Isik et al., (2014) presented a formation of an Mo-rich Laves phase during high-
temperature exposure and creep of a tempered martensite ferritic steel with 12 wt.%
Cr and 1 wt.% Mo [15]. Also, analysis of the creep deformation in non-reinforced
regions of creeping short fiber composites has been performed under tensile stress
using the virtual fiber method [16]. As a different work, changes in mechanical and
physical properties of polyurethane thermoplastic during aging at 70◦C and 90◦C
have been analyzed [17]. In addition, recently as a different research work, creep
tests have been fulfilled at 923 and 973 K on two heats with different solution an-
nealing conditions [18]. Moreover, in the recent years, various investigations and
experimental attempts were carried out to analyze the creep behaviours of the mate-
rials [19-24]. For example, Monfared [24] predicted stress behaviour in short fiber
composites, under axial tensile stress, based on well-behaved displacement rates in
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the steady state creep, using imaginary fiber technique. Also, an approach was based
on polynomial approximation of relative displacement on the contact ellipse. For low
computational cost and without any spatial discretization, it gave a good estimation
of tangential traction and creep. Also, a regularization of the Kalker linear creep
theory was presented [25]. Recently, different research works have been presented
for analysis of the material deformations in various references [26,27]. For exam-
ple, the effect of “SiC” on the characteristics and properties of “Cu/SiC” composites
have been analyzed [26]. In which, it was shown that with increasing the volume
fraction and particle sizes of the particulate imposed important effect on the thermal
and electrical conductivity of the composites. In addition recently, a researcher has
studied the topic of energy and transmissibility in nonlinear viscous base isolators
with considering creep phenomenon [28]. Moreover, Chen et al., investigated non-
linear geometric effects in mechanical bistable morphing structures. They classified
the conditions for bistability, and extended the large deformation theory of plates and
shells [29]. Also, they demonstrated, through both theoretical analysis and table-top
experiments, that two dimensionless parameters control bistability.

In present research work, prediction of the creep behaviour is presented, using
the neural network method, which can improve the accuracy of the creep behaviour
predictions in the fibrous composites, particularly when the functional dependency is
nonlinear. It is shown, that the neural network method is simpler and faster than the
available methods. The present fast method is user friendly and simple in compari-
son with the difficult analytical, numerical, and experimental methods. To validate
the present method and obtained results, the results of the present neural network
and experimental methods are compared with together by experimental data for a
creeping metal matrix composite (MMC). Metal matrix composite is selected to val-
idate the obtained results, owing to the inaccessibility to the experimental data of the
creeping composites.

Lastly, the obtained results are verified through comparison with the experimen-
tal data. In which, a suitable agreement is seen among the obtained and available
experimental data.

2. MATERIAL AND METHOD

Here, a schematically axisymmetric unit cell is presented as a representative of the
full short fiber composite with a fiber with its surrounding matrix as two coaxial
cylinders. The mentioned unit cell model is shown in Figs. 1a and b. In addition, a
complete fiber-matrix interface is assumed.

In addition, a micromechanical and cylindrical unit cell model is used as a repre-
sentative of the short fiber composites in the present research, shown in Fig. 1b. Also,
two cylindrical coordinate systems are used at the center and at the end of the fiber,
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Fig. 1. (a). The unit cell model scheme; (b). Unit cell model as a composite representative in
axisymmetric model under tensile axial stress σ0.

shown in Figs. 1a, b. The elastic deformation of the fiber is approximately negligible,
as compared with the creep deformation of the creeping matrix. That is, the elastic
fiber behaviour is similar to the rigid fiber behaviour.

In the present model, it is assumed that a cylindrical fiber with a radius a and a
length 2l is inserted in a coaxial cylindrical matrix with an outer radius b and a length
2l′. The volume fraction and the aspect ratio of the fiber are presented by f and
s = l/a, respectively. As well, k = l′a/lb is considered as a parameter in relation
with the geometry of the unit cell. An axial tensile stress, σ0 = σapplied, is uniformly
applied at the end faces of the unit cell (at z = ±l′). The creep behaviour of the
matrix is introduced by an exponential law, as the following in Eq. (1):

(1) ε̇e = A exp
(σe
B

)
,

at which, A and B are the steady state creep constants of the matrix material and the
equivalent stress σe and the equivalent strain rate ε̇e are given by following formula-
tion:

σe =
1√
2

√
(σr − σθ)2 + (σθ − σz)2 + (σz − σr)2 + 6τ2rz ,(2)

ε̇e =

√
2

3

√
(ε̇r − ε̇θ)2 + (ε̇θ − ε̇z)2 + (ε̇z − ε̇r)2 + 6ε̇2rz ,(3)
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in which, the parameters ε̇r, ε̇θ, ε̇z , and ε̇rz are the strain rate components in the
directions, indicated by the subscripts. In addition, the parameters σr, σθ, σz , and
τrz are the radial, circumferential, axial, and shear stress components, respectively.

Here, the neural network method is introduced for predicting the creep behaviour
of the short fiber composites. One of the important advantages of the present model
is in fast and simple prediction and analysis of such problems, instead of the time
consuming and the complex experimental, analytical, and numerical methods. Ad-
ditionally, the present approach is very simple for prediction of the composite creep
strain rate behaviour. The obtained results are next validated by the experimental data
of Morimoto et al., [10].

Fascinatingly, good agreements are found between the present approach and the
experimental predictions. A graphical description of a 3-layer feed forward network
is shown in Fig. 2.
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Fig. 2. The graphically presenting the artificial neural network structure and configuration.

Considering that the network consists of n, p, and m neurons in input, hidden,
and output layers, respectively. The net input (Zj) to node j in the hidden layer is of
the following form:

(4) Zj =
n∑
i=1

Wij Xi + bj , j = 1, 2, . . . , p,

where, Xj is the input of node j of the input layer, Wij is the connection weight in
relation with node i of the input layer and node j of the hidden layer, and bj is the bias
in relation with node j of the hidden layer. The output h from a neuron is obtained
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by transforming its input, utilizing a appropriate transfer function, as the following:

(5) hj = f

(
n∑
i=1

Wij Xi + bj

)
, j = 1, 2, . . . , p.

Also, in the output layer, the net input Zk to node k is of the below form:

(6) Zk =

p∑
j=1

Wjk hj + bk , k = 1, 2, . . . ,m.

At which, the output Yk of node k of the output layer is written, as the following
form:

(7) Yk = g

 p∑
j=1

Wjk hj + bk

 , k = 1, 2, . . . ,m.

Moreover, the error is calculated employing Eq. (8), known as average squared error.
Here, N denotes the total number of samples in training set

(8) MSE =
1

N

N∑
i=1

(ei)
2 =

1

N

N∑
i=1

(ti − ai)2 .

It should be mentioned, that the artificial neural networks are employed as an in-
terdisciplinary tool in numerous kinds of nonlinear problems. One needs a training
algorithm to design a neural network for a certain problem. As a neural networks
function, based on samples (patterns), it is required to prepare a set of applied exam-
ples, representing the problem in the forms of system inputs and outputs.

Also, to develop a neural network with suitable and good performance, a sufficient
quantity of experimental data must be available. During the training and testing ses-
sions, the network architecture, learning algorithm, and the other related parameters
of the neural network should also be optimized to the exact problem under analysis.

Once the neural network is adequately optimal, and trained, based on these data,
it then becomes possible to create acceptable results when presented with any new
input pattern, it has never experienced before.

3. RESULT AND DISCUSSION

To verify the present solution method, the SiCf /Alm composite is chosen as a case
study, and the obtained results are compared with the experimental ones. For the com-
posite used here SiCf /Alm, the volume fraction of fibers is 0.15 and the fibers have an
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aspect ratio of 7.4 and k = 0.76, which are in accordance with the suggestions made
in [10]. Also, for the creeping the matrix, constants are values of A = exp(−24.7)
and B = 6.47. As mentioned before, the purpose of the creep analysis by neural net-
work method is in the proper composite design. That is, the creep behaviour must be
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Fig. 5. Presenting the contour nodal solution data of the creep radial stress (X in FEM =
radial direction).

studied to prevent the failure and defect in the creeping short fiber composites. The
comparison of the present method and experimental results is presented in Fig. 3. For
comparing the results of the present method, because of inaccessibility to the exper-
imental data of the creeping optoelectronic composites, the SiC/6061Al composite
is selected as a case study and also the present method and experimental results are
compared together.

Figure 3 shows a high-quality agreement between the present method and exper-
imental results for the second stage creep of the short fiber composite. As well, it is
found that the values of the composite creep strain rate increase with increasing the
stress values. Based on this behaviour, we can control the composite creep strain rate
behaviour, because of the smooth gradients.

Figure 4 presents an excellent agreement between present method and FEM re-
sults for the steady state creep of the short fiber composite. Also, it is seen that the
values of the radial stress increase with increasing the axial position. Based on this
behaviour, we may simply control of the composite radial stress behaviour, because
of the uniform and suitable gradients.

The finite element (FEM) analysis of the creep radial stress is graphically shown
in Fig. 5. This FEM analysis and solution can be useful to better designing the short
fiber composite devices.

In addition, Fig. 5 presents graphically the whole distribution of the creep radial
stress, using the contour nodal solution data in the unit cell. This distribution may
be valuable for better designing the fibrous composites. Note, that the marked region
in Fig. 5 is a critical zone, because undesirable and bad events may happen in the
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Fig. 6. Stresses in the creeping matrix at r = r′ = b, 0 ≤ z′ ≤ (l′ − l): (a) radial stress. (b)
axial stress.
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Fig. 6. (continue). Stresses in the creeping matrix at r = r′ = b, 0 ≤ z′ ≤ (l′ − l): (c)
circumferential stress; (d) shear and equivalent stresses.
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mentioned region, such as creep rupture.
Figures 6 a-d show the creep behaviour of the matrix in the different regions of

the unit cell. In these figures, in all curves presented in Figs. 6 a-d, zero slopes
and negligible gradients are also observed at the boundary of the unit cell, which
is because of the long distance away from the fiber end and in the proximity to the
applied stress in the steady state creep of the short fiber composite. Ascending trends
are generally observed in the normal stress values, unlike the trend of the shear and
equivalent stress values. These characteristics and behaviours can be beneficial and
important for composite design.

The radial and circumferential stress values are approximately the same with a
partial difference shown in Figs. 6 a,c. The mentioned same values are because of
applying the logical and correct boundary conditions. Equivalent stress is a suitable
and important factor to analyze stresses for designing purpose in all regions of the
short fiber composites.

4. SUMMARY AND CONCLUSION

The present research introduced a novel approach, based on neural network predic-
tion for easy and quick estimation of the creep plastic behaviour of the short fiber
composites. The new insight is presented to predict the composite creep radial stress
behaviour for the short fiber composites, using neural network method instead of the
difficult analytical, numerical, and experimental methods. The possibility of the bad
and unwelcome happenings is high in the mentioned region, based on the radial stress
values at the fiber end. Finally, good agreements are seen among the present neural
network method, FEM, and experimental results. One of the important advantages of
the present method is in the application of the approach in place of the other complex
methods. Ultimately, we can rely on the present method for predicting the composite
creep radial stress values. In addition, the radial stress trend is ascending along with
the soft and uniform gradients. So, we can also manage and control the composite
creep radial stress behaviour by reason of the smooth gradients. Thus, predicting the
creep radial stress behaviour of the short fiber composites is very important for better
designing the fibrous composites in the creep of the optoelectronic composite devices
and sensors.
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