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ABSTRACT: This paper continues previous research of the Bounded Error Al-
gorithm (BEA) for Iterative Learning Control (ILC) and its application into the
control of robotic manipulators. It focuses on investigation of the influence of
the parameters of BEA over the convergence rate of the ILC process. This is
performed first through a computer simulation. This simulation suggests opti-
mal values for the parameters. Afterwards, the estimated results are validated
on a physical robotic manipulator arm. Also, this is one of the first reports of
applying BEA into robots control.
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1. INTRODUCTION

The Iterative Learning Control (ILC) was first introduced by Arimoto in 1984 [1].
ILC for robotic arms is a class of self-tuning algorithms, which repeatedly implement
assigned tasks of robot motions in order to minimize trajectory-tracking errors [1,2].

The main advantage of the ILC is that it can compensate trajectory errors, caused
by the imprecise dynamics system model as well as its deterministic disturbances.
However, there are some deficiencies, which can even make the ILC inapplicable in
real life operations. Despite the convergence of the ILC, the tracking performance,
at early iterations, can result in a significant increase in tracking errors (see Fig. 1.a),
related to violating the constraints in the motion of the joints of the robotic arm.
The ILC procedure cannot be completed successfully in this case. This is called the
transient growth problem. [3,4].

Previous research showed that this problem can be eliminated by using the Bounded
Error Algorithm (BEA) for ILC [3,5]. This algorithm limits the maximum allowed
divergence between the desired and the executed trajectory, resulting in limiting the
maximum tracking error and solving the transient growth problem (see Fig. 1.b). This
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Fig. 1. a. Transient growth problem; b. Solution with the Bounded Error Algorithm 

Previous research showed that this problem can be eliminated by using the 

Bounded Error Algorithm (BEA) for ILC [3, 5]. This algorithm limits the maximum 

Fig. 1. (a) Transient growth problem; (b) Solution with the Bounded Error Algorithm

algorithm is proven to be robust and convergent [5]. However, there are some param-
eters, which influence the performance of the BEA. This research investigates them
and computes the optimal values.
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The paper is organized as follows. Section 2 formulates the problem. Section 3
analyses the parameters through a computer simulation. Section 4 validates those
results on a real robotic arm.

2. PROBLEM FORMULATION

Let’s consider an articulated robot manipulator (as is in [3]) with 6 degrees of freedom
and dynamic model, based on the Lagrange’s formulation of equations of motion in
the space of generalized coordinates:

(1) AAA (qqq) q̈qq + bbb (qqq, q̇qq) +DDDq̇qq + ggg (qqq) + fff = uuu ,

where qqq is the 6×1 vector of generalized coordinates (joint angles);AAA(qqq) is the 6×6
symmetric positive-definite inertia matrix; the 6× 1 vector bbb(qqq, q̇qq) takes into account
the Coriolis and centrifugal torques; DDD = diag {δ1, . . . , δ6} denotes the diagonal
6×6 matrix of the coefficients of viscous friction; g(q)g(q)g(q) is the 6×1 vector, represent-
ing gravity torques; fff = [f1sign(q̇1) . . . f6sign(q̇6)]

T is the vector of coefficients of
Coulomb friction, and uuu = uuul+uuuc is the 6×1 vector of generalized torques where uuul
and uuuc are feed-forward and feedback terms, respectively. The allowable set of gen-
eralized torques is a rectangular hyper-parallelepiped, where ui ∈ [−Umax

i , Umax
i ].

The input trajectoryuuul is the feed-forward term of the control lawuuu in (1), and l =
1, . . . , N is the current iteration number; qqql is the actual output trajectory; and qqqd is
the desired output trajectory. The offline computed feed-forward term uuul+1 decreases
the tracking error of the robot’s motion on the next iteration. The realization of
the considered ILC scheme requires the specification of feed-forward and feedback
controllers, respectively [3]. The BEA for ILC is based on this update control law
that improves the feed-forward control term:

(2) uuul+1(t) = uuul(t)

+

{
LLL(qqql(t))[q̈qqd(t)−q̈qql(t)+Lv(q̇qqd(t)−q̇qql(t))+Lp(qqqd(t)−qqql(t))] t ∈ [0;T sl ]

0 t ∈ (T sl ;T ]
,

where LLL(qqql(t)), l = 0, 1, . . . , N is a learning operator; uuu0(t) ≡ 0 is the initial feed-
forward control input; the learning gains Lp and Lv are positive constants, t ∈ [0, T ]
denotes time, where [0, T ] is the robot tracking time interval [5].

The feedback term is considered to be the following:

(3) uuuc = Â(qqq)[q̈qqd +Kv(q̇qql − q̇qqd) +Kp(qqql − qqqd)] + b̂(qqq, q̇qq) + D̂q̇qq + ĝ(qqq) + f̂ ,

where qqql and q̇qql, l = 1, . . . , N are respectively, the feedback generalized coordinates
and velocities of the output trajectory; Â, b̂, D̂, ĝ and f̂ are the corresponding es-
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(3)(𝒖𝒄 = �̂�(𝒒)[�̈�𝒅 + 𝐾𝒗(�̇�𝒍 − �̇�𝒅) + 𝐾𝑝(𝒒𝒍 − 𝒒𝒅)] + �̂�(𝒒, �̇�) + �̂��̇� + �̂�(𝒒) + �̂�, 

where 𝒒𝒍 and �̇�𝒍, 𝑙 = 1, … , 𝑁 are respectively, the feedback generalized coordinates 

and velocities of the output trajectory; �̂�, �̂�, �̂�, �̂� and �̂� are the corresponding esti-

mates of 𝑨, 𝒃, 𝑫, 𝒈 and 𝒇 from (1). The feedback gains 𝐾𝑣 and 𝐾𝑝 are positive con-

stants [5]. 

 

Fig. 2. BEA workflow chart 

The Bounded Error Algorithm can be illustrated with the workflow chart, shown in 

Fig. 2. From the update control law (2) follows, that the learning gains 𝐿𝑝 and 𝐿𝑣 

are positive constants, which should be preselected. From the workflow chart, there 

is another constant 𝜀, which determines whether iteration must be stopped or con-

tinued during the trajectory tracking process. The goal of this paper is to find the 

influence of those parameters and to suggest their optimal values, which will lead to 

the fastest convergence rate. 

Fig. 2. BEA workflow chart.

timates of AAA, bbb, DDD, ggg and fff from (1). The feedback gains Kv and Kp are positive
constants [5].

The Bounded Error Algorithm can be illustrated with the workflow chart, shown
in Fig. 2. From the update control law (2) follows, that the learning gains Lp and
Lv are positive constants, which should be preselected. From the workflow chart,
there is another constant ε which determines whether iteration must be stopped or
continued during the trajectory tracking process. The goal of this paper is to find the
influence of those parameters and to suggest their optimal values, which will lead to
the fastest convergence rate.

3. INVESTIGATION AND OPTIMIZATION OF THE PARAMETERS THROUGH A COM-
PUTER SIMULATION

The computer simulation had a similar setup as the one presented in [4]. The Puma
560 robotic manipulator with six degrees of freedom was simulated. Two different
sets of parameters for the dynamics model of the robot were used. One reported from
Armstrong in 1986 [6] and another one reported by Tarn [7]. This allows taking in
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consideration the errors, due to imprecise modelling of the robot arm dynamics in a
simulation procedure, applying BEA [3].

The goal of the first group of experiments was to evaluate the influence of the
Lp and the Lv parameters. This was performed by executing multiple BEA proce-
dures with equal desired trajectory and different combinations of values for those
parameters. The ε was set to 1, which is high enough and at the same time pre-
vents the transient growth problem. The number of iterations was limited to 25. The
results are illustrated in Figs 3 and 4, where the horizontal axis represents the iter-
ations number and the vertical represents the maximum error for the corresponding
iteration. Higher convergence rate is achieved when the value of Lp is significantly
higher than the value of Lv. This confirms the results, presented in another research
[8], but for a completely different robotic configuration.

3 Investigation and optimization of the parameters through a computer 
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Fig. 3. Influence of the 𝐿𝑝 and the 𝐿𝑣 parameters: a. 𝐿𝑝 value of 0; b. 𝐿𝑝 value of 1 Fig. 3. Influence of the Lp and the Lv parameters: (a) Lp value of 0; (b) Lp value of 1.

 

Fig. 4. Influence of the 𝐿𝑝 and the 𝐿𝑣 parameters: a. 𝐿𝑝 value of 3; b. 𝐿𝑝 value of 5 

The next group of experiments investigated how the value of 𝜀 changed the conver-

gence rate of the BEA for ILC. Figure 5. a shows the results for non-optimal values 

for 𝐿𝑝 and 𝐿𝑣. It can be concluded that for such values the value of 𝜀 have a low 

impact on the convergence rate. However, the presented in Fig. 5. b results show 

that for optimal values of 𝐿𝑝 and 𝐿𝑣 the convergence rate is much higher for high 

values of 𝜀. 

 

 

Fig. 5. Influence of 𝜀 on the convergence rate of the BEA: a. non-optimal values for 

𝐿𝑝 = 3 and 𝐿𝑣 = 3; b. with more optimal values of 𝐿𝑝 = 3 and 𝐿𝑣 = 0 

After those experiments it can be concluded, that faster convergence rate of the 

BEA for ILC can be achieved if the selected value for 𝐿𝑝 is significantly higher 

than the selected value for 𝐿𝑣 and if the maximum possible value for 𝜀 is chosen. 

Fig. 4. Influence of the Lp and the Lv parameters: (a) Lp value of 3; (b) Lp value of 5.
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Fig. 5. Influence of 𝜀 on the convergence rate of the BEA: a. non-optimal values for 
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Fig. 5. Influence of ε on the convergence rate of the BEA: (a) non-optimal values for Lp = 3
and Lv = 3; (b) with more optimal values of Lp = 3 and Lv = 0.

The next group of experiments investigated how the value of ε changed the con-
vergence rate of the BEA for ILC. Figure 5. a shows the results for non-optimal
values for Lp and Lv. It can be concluded that for such values the value of ε have a
low impact on the convergence rate. However, the presented in Fig. 5.b results show
that for optimal values of Lp and Lv the convergence rate is much higher for high
values of ε.

After those experiments it can be concluded, that faster convergence rate of the
BEA for ILC can be achieved if the selected value for Lp is significantly higher than
the selected value for Lv and if the maximum possible value for ε is chosen.

4. APPLYING THE BOUNDED ERROR ALGORITHM ON A ROBOTIC ARM

BEA was incorporated into the control of a SCARA type two link robot (see Fig. 6).
The motors of that robot were brushed DC geared motors. The control board allowed
setting their torques at any moment. Those motors are very similar to those simulated
in the above section. They had Hall sensor type quadrature encoders. The robot had a
belt driven mechanics. This resulted in less than 0.0017 radians positioning precision
for both links.

Figure 7 is a screenshot of the robot arm real-time telemetry. The green trajectory,
shown in Fig. 7, is the desired one. The two yellow lines represent the robot links.
The yellow circle illustrates where the robot end effector should be at the desired time
since the trajectory had a fixed duration. The red trajectory represents the tracked
trajectory.

In all of the experiments, the parameter Lv was set to 0.01 and Lp was set to 5, as
suggested by the analyses in the previous chapter. Multiple values for ε were tested.
The first experiment used a value of 0.1, which leads to a high number of iterations
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Fig. 6. a Two link SCARA type robotic arm; b. Robot kinematics scheme 
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ry, shown in Fig. 7, is the desired one. The two yellow lines represent the robot 

links. The yellow circle illustrates where the robot end effector should be at the 

desired time since the trajectory had a fixed duration. The red trajectory represents 

the tracked trajectory. 

In all of the experiments, the parameter 𝐿𝑣 was set to 0.01 and 𝐿𝑝 was set to 5, as 

suggested by the analyses in the previous chapter. Multiple values for 𝜀 were tested. 

The first experiment used a value of 0.1, which leads to a high number of iterations 

and quite a slow convergence process. The iteration was very short, but the time for 

returning the robot arm to the initial position, between two iterations, slowed down 

the whole process. With increasing the value for 𝜀 the iteration time is increasing, 

too. The best value was experimentally proven to be 0.5, which resulted in a total 

count of about 12 iterations, before correct execution of the desired trajectory. Fig-

ure 7 shows the executed trajectories at 3
rd

 and 9
th
 iterations. 

It is worth mentioning, that ILC without the BEA, was also tested for the given 

trajectory. But it needed a higher number of iterations. That was due to the selected 

trajectory, which in the middle needed a change of the first motor rotation direction. 

The error accumulated on that point and needed more iteration to be reduced. The 

BEA prevented such accumulation simply by premature termination of the trajecto-

Fig. 6. (a) Two link SCARA type robotic arm; (b) Robot kinematics scheme.

and quite a slow convergence process. The iteration was very short, but the time for
returning the robot arm to the initial position, between two iterations, slowed down
the whole process. With increasing the value for ε the iteration time is increasing,
too. The best value was experimentally proven to be 0.5, which resulted in a total
count of about 12 iterations, before correct execution of the desired trajectory. Figure
7 shows the executed trajectories at 3rd and 9th iterations.

It is worth mentioning, that ILC without the BEA, was also tested for the given
trajectory. But it needed a higher number of iterations. That was due to the selected
trajectory, which in the middle needed a change of the first motor rotation direction.
The error accumulated on that point and needed more iteration to be reduced. The
BEA prevented such accumulation simply by premature termination of the trajectory
tracking. Last experiment used a straight line trajectory. Higher value of ε reduced
the number of iterations.ry tracking. Last experiment used a straight line trajectory. Higher value of 𝜀 re-

duced the number of iterations. 

 

Fig. 7. SCARA robot recorded (red curve) and desired (green curve) trajectories at: 

a. 3-rd iteration; b. 9t-h iteration  

5 Conclusion 

In conclusion, this paper investigated the influence of different combinations of 

the BEA for ILC parameters on two completely different types of robots. The inves-

tigation started on a computer simulated 6 degree of freedom robotic arm. Then, the 

results were populated on a physical robotic manipulator with a different configura-

tion. This paper reports the use of the BEA for ILC on a real robotic system. This 

research proposes how the BEA parameters should be selected for achieving opti-

mal convergence rate and confirmed the following statements: 

 BEA can be applied safely on a robotic arm; 

 The positioning error must have a higher priority than the velocity error within 

the ILC update procedure; 

 Higher value of BEA’s 𝜀 leads to a faster convergence rate; 

 For some cases the BEA is faster than classic ILC, because it prevents error ac-

cumulation when movement direction changes.  
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5. CONCLUSION

In conclusion, this paper investigated the influence of different combinations of the
BEA for ILC parameters on two completely different types of robots. The investi-
gation started on a computer simulated 6 degree of freedom robotic arm. Then, the
results were populated on a physical robotic manipulator with a different configura-
tion. This paper reports the use of the BEA for ILC on a real robotic system. This
research proposes how the BEA parameters should be selected for achieving optimal
convergence rate and confirmed the following statements:

• BEA can be applied safely on a robotic arm;

• The positioning error must have a higher priority than the velocity error within
the ILC update procedure;

• Higher value of BEA’s ε leads to a faster convergence rate;

• For some cases the BEA is faster than classic ILC, because it prevents error
accumulation when movement direction changes.
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