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Abstract 

Groundwater contamination due to leakage of gasoline is one of the several causes which affect the 
groundwater environment by polluting it. In the past few years, In-situ bioremediation has attracted researchers 
because of its ability to remediate the contaminant at its site with low cost of remediation. This paper proposed 
the use of a new hybrid algorithm to optimize a multi-objective function which includes the cost of remediation 
as the first objective and residual contaminant at the end of the remediation period as the second objective. The 
hybrid algorithm was formed by combining the methods of Differential Evolution, Genetic Algorithms and Sim-
ulated Annealing. Support Vector Machines (SVM) was used as a virtual simulator for biodegradation of con-
taminants in the groundwater flow. The results obtained from the hybrid algorithm were compared with Differ-
ential Evolution (DE), Non Dominated Sorting Genetic Algorithm (NSGA II) and Simulated Annealing (SA). It 
was found that the proposed hybrid algorithm was capable of providing the best solution. Fuzzy logic was used 
to find the best compromising solution and finally a pumping rate strategy for groundwater remediation was pre-
sented for the best compromising solution. The results show that the cost incurred for the best compromising 
solution is intermediate between the highest and lowest cost incurred for other non-dominated solutions. 

Key words: differential evolution, fuzzy logic, genetic algorithm, groundwater, hybrid algorithm, in-situ biore-
mediation, simulated annealing, support vector machine (SVM)  

INTRODUCTION 

Generally one of the cleanest sources of water, 
groundwater can, however, see its quality compro-
mised through leakage followed by leaching of or-
ganic and inorganic contaminants. These may enter 
the groundwater aquifer through a variety of sources, 

including toxic waste disposal sites, accidental chemi-
cal spills and improperly designed or maintained 
chemical transportation and storage facilities. Often 
released through the leakage of underground petro-
leum product storage tanks, the organic contaminant 
mix of benzene, toluene, ethyl benzene, and xylenes 
(BTEX) is of significant concern because of its harm-
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ful effects, even when present at very low concentra-
tions. In the past, various techniques such as pump-
and-treat, air sparging, and in situ bioremediation 
have been applied to groundwater remediation, but in 
recent times the latter technique has seen widespread 
use. It involves the use of injection and extraction 
wells installed at various locations on the site to check 
and remediate the concentration plume. Injection 
wells, located up gradient, are used to add oxygen and 
nutrients into the groundwater aquifer, whereas the 
extraction wells are located down gradient from the 
site. In a typical in situ bioremediation system, the 
location of injection and extraction wells, along with 
their pumping rates are decision variables determined 
after optimizing the system.  

A review of the literature indicates that regression 
and metaheuristic based methods have served in as-
sessing optimal groundwater remediation design un-
der either single- and multi-objective optimization 
techniques. In an early approach to in situ bioremedia-
tion optimization for groundwater, MINSKER and 
SHOEMAKER [1998] applied the Successive Approxi-
mation Linear Quadratic Regulator (SALQR). Later, 
HU et al. [2004] developed a dynamic predictive con-
trol system for in situ bioremediation of groundwater, 
featuring the minimization of overall remediation cost 
as a single objective function. In their model, simula-
tion and decision-making tools served as the two con-
trol systems involved in the optimization process. 
A genetic algorithm was used as a search method for 
optimization of the cost function as a single objective 
optimization. Similarly, SHIEH et al. [2005] studied 
the combined use of genetic algorithms and simulated 
annealing to search for optimal control of in situ bio-
remediation. In their model, BIOPLUME II was used 
for simulating aquifer hydraulics and the bioremedia-
tion process. Later, HU et al. [2007] developed a con-
trol system for in situ bioremediation of groundwater 
using a genetic algorithm for the multi-objective op-
timization method. Their objectives included mini-
mizing the overall cost and maximizing system effi-
ciency in the face of a bioremediation site’s uncertain 
data. However, the present study proposes a novel 
procedure that employs a metaheuristic hybrid algo-
rithm to solve a multi-objective optimization for in 
situ bioremediation of groundwater. 

Metaheuristic algorithms have been extensively 
applied in optimization problems [MONTESINOS et al. 
1999; PANIGRAHI et al. 2008; RAVIKUMAR PANDI, 
PANIGRAHI 2006]. Some of the metaheuristic algo-
rithms most commonly employed in deriving a global 
optimal value in an optimization problem include: 
genetic algorithm (GA), simulated annealing (SA), 
differential evolution (DE), particle swarm optimiza-
tion (PSO) and Tabu search (TS). However, metaheu-
ristic optimizers can miss the global optimum, con-
verging rather to a local, sub-optimal point. The oc-
currence of this serious problem [OLDENHUIS 2010] 
can be minimized through the use of artificial intelli-
gence and operational research in conjunction with 

metaheuristic algorithms. The resultant algorithm is 
termed a hybrid algorithm. In such a hybrid algo-
rithm, the weaknesses associated with each algorithm 
are negated by the strengths of others, while common 
strengths are cumulated. Hybrid algorithms can be 
developed by combining metaheuristic algorithms 
with one or more existing algorithms, such as dy-
namic programming [TSE et al. 2007], constraint pro-
gramming [MAYER 2008; PRESTWICH 2002], tree 
search method [BLUM 2005; ROTHBERG 2007] or 
even with another metaheuristic algorithm [ELRAGAL 
et al. 2011; OLDENHUIS 2010; ZHANG et al. 2009]. 

Metaheuristic hybrid algorithms are thus hybrid 
algorithms with two or more coupled algorithms to 
increase the robustness of the algorithm. In such hy-
brid algorithms, a population-based algorithm tries to 
find a domain in which global optima may exist, fol-
lowed by a local search, which can quickly identify 
the best solution. Both DE and PSO have been com-
bined to yield hybrid algorithms [ALI et al. 2009; EL-
RAGAL et al. 2011; VINKO et al. 2007]. In the present 
study, GA, SA and DE were coupled to form a hybrid 
metaheuristic algorithm. This in turn was employed to 
solve an in situ bioremediation problem requiring 
multi-objective optimization. Our objective was to 
determine the best pareto on the basis of the algo-
rithm’s population size and evaluate different injec-
tion and extraction well-pumping patterns to deter-
mine the best compromise solution.  

MATERIAL AND METHODS 

DESCRIPTION OF STUDY AREA 

A hypothetical contaminant site (Fig. 1) was con-
sidered in the present study. The aquifer was assumed 
to be homogeneous, with constant head boundaries on 
the west and the east sides of the domain having re-
spective head values of 30.5 m and 27.7 m. The north 
and south side boundaries were assumed to be imper-
vious, resulting in an initial west to east flow under an 
initial hydraulic gradient of 0.004. The groundwater  
 

 
Fig. 1. Location of injection and extraction wells and the 

initial BTEX concentration (ppm) at the contaminated site; 
source: own elaboration 

Y
, m

 

X, m 



Multi-objective optimization of in-situ bioremediation of groundwater using a hybrid metaheuristic technique… 31 

 © PAN in Warsaw, 2015; © ITP in Falenty, 2015; Journal of Water and Land Development. No. 27 (X–XII) 

flow simulation was assumed to operate in a steady 
state and the representative organic pollutant was tak-
en to be BTEX. Figure (1) depicts the initial contami-
nant concentration and a set of preselected injection 
and extraction well locations for an in situ bioreme-
diation system. 

The maximum concentration of organic pollutant 
was assumed to be 40 ppm and the site’s hydraulic 
conductivity was taken to be 6·10–6 m·s–1. The trans-
verse and longitudinal dispersivity of the 15 m thick 
aquifer was 2 m and 10 m, respectively. An effective 
porosity of 0.3 and a retardation and anisotropic factor 
of 1 were assumed. A three-year remediation period 
with an allowable maximum organic contaminant 
concentration of 5 ppm at its completion was selected 
for modeling. 

SIMULATION OPTIMIZATION MODEL  
FOR IN-SITU BIOREMEDIATION 

Groundwater flow and solute transport equations 
were simulated with BIOPLUME III, and its outputs 
for maximum and minimum hydraulic head and max-
imum contaminant concentration in the study area 
were calibrated and validated using Support Vector 
Regression (SVR). Finally, the SVR was coupled with 
an optimization algorithm to generate the paretos. 
After obtaining the paretos from the various algo-
rithms (DE, DGS (Hybrid of DE, SA and GA), SA 
and GA), the performance of the algorithms was eval-
uated with respect to which eventually provided the 
best compromise solution. 

BIOPLUME III 

The BIOPLUME III program is a two-dimen-
sional, finite difference model that simulates natural 
attenuation of organic contaminants in ground water 
due to advection, dispersion, sorption, and biodegra-
dation. The model simulates the biodegradation of 
organic contaminants using a number of aerobic and 
anaerobic electron acceptors (oxygen, nitrate, iron 
(III), sulphate, and carbon dioxide). The transport 
equations for the contaminant and oxygen are ex-
pressed as 
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where:  
b = the saturated thickness, m; 
t = time, s; 
xi, xj = Cartesian coordinates, m; 
C = the concentration of hydrocarbons, mg·L–1;
C’ = the concentration of hydrocarbons in the

source or sinks, mg·L–1; 
Di j = the coefficient of hydrodynamic disper-

sion; 

O = the concentration of oxygen, mg·L–1; 
O’ = the concentration of oxygen in the source 

or sink, mg·L–1; 
Rc = the retardation factor for hydrocarbons; 
Vi = the seepage velocity in the direction of xi, 

m·s–1; 
W = the volume flux per unit area, L·s–1·m–2; 
η = the effective porosity. 

The biodegradation process is simulated by in-
corporating the instantaneous reaction model pro-
posed by BORDEN and BEDIENT [1986]. It was as-
sumed that the utilization of oxygen and contaminants 
by microorganisms in the subsurface zone could be 
simulated as an instantaneous reaction between the 
organic contaminant and the electron acceptors. The 
biodegradation of contaminants using aerobic electron 
acceptors was simulated using the principle of super-
position [BORDEN, BEDIENT 1986], thus 

 FOCRC /=Δ ; O = 0 where C > O/F (3) 

 FCCRO .=Δ ; C = 0 where O > C.F (4) 
where: 

ΔCRC = calculated changes in concentrations of 
contaminant due to bioremediation, 
ppm; 

ΔCRO = calculated changes in concentrations of 
oxygen due to bioremediation, ppm; 

F = the ratio of oxygen to hydrocarbon con-
sumed. 

Using BIOPLUME III, equations (1) to (4) were 
employed in simulating the contaminant concentration 
and maximum and minimum head at the end of each 
pumping period. A large number of pumping patterns 
was randomly generated and served as input to the 
BIOPLUME III model. The pumping patterns of the 
decision vector and the output of BIOPLUME III 
model were then respectively employed as input and 
output to calibrate and validate the Support Vector 
Machine. 

SUPPORT VECTOR MACHINE (SVM)  
AS A VIRTUAL SIMULATOR 

In a formal simulation-optimization strategy, an 
optimization algorithm is incorporated into the simu-
lation model as a subroutine or a submodel [WANG, 
ZHENG 1997]. However, this process normally re-
quires hundreds or even thousands of calls to the sim-
ulator, rendering the process extremely time-consum-
ing and computationally intensive. To reduce the 
computational burden, a SVM was used in the present 
study as a virtual simulator. In machine learning, the 
SVM algorithm analyzes data and recognizes patterns 
and ultimately serves in classification and regression 
analysis. Numerous studies have shown the usefulness 
of the SVR method in hydrological forecasting (e.g. 
BELAYNEH et al. [2014]). In the present study, the 
SVM linked with the optimization algorithm was in-
dependent of the model runs. 
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POTENTIAL WELL LOCATIONS 

For in situ remediation of the contaminant at the 
study area, a number of injection and extraction wells 
were installed. In the present study, the locations of 
the seven injection wells (u1, u2, u3, u4, u5, u6 and 
u7) and six extraction wells (e1, e2, e3, e4, e5 and e6) 
were preselected (Fig 1). Out of these seven injection 
wells and six extraction wells, three injection wells 
(u1, u2 and u4) and one extraction well (e2) were op-
timally selected for their potential use in developing 
the optimal design for in situ bioremediation, an im-
portant facet in solving groundwater remediation 
problems [GUAN, ARAL 1999; HUANG, MAYER 1997]. 
This optimization process was undertaken by using an 
ANN (Artificial Neural Network) embedded in 
a Monte Carlo approach [PRASAD, MATHUR 2008]. 
The same sets of well locations were then used in the 
present study to resort to further metaheuristic optimi-
zation.  

MULTI-OBJECTIVE OPTIMIZATION 

Since the cost of remediation depends on the al-
lowable residual level of the contaminant, remediation 
costs can run very high if a low permissible contami-
nant level is adopted. Thus, the cost and contaminant 
concentration in the study area represent two conflict-
ing objectives, which require a multi-objective opti-
mization approach. The objective functions [SHIEH, 
PARELTA 2005] are: 

Objective 1: Minimize cost, Z 
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where: 

ir = the discount rate; 
q(n) = the injection/extraction rate of the nth

well, L3·T–1; 
C = the concentration of contaminant remain-

ing at the end of the 3-year management 
period, ppm;  

CIP(n) = the installation cost of the well, $ per 
well; 

Cq(n) = the cost parameter of injection/extraction, 
$ per lps; 

( )∑ =

iN

n
knqD

1
),(  = the oxygen and nutrient injec-

tion facility capital cost, $; 
( )∑ =

eN

n
knqE

1
),(  = the treatment facility capital

cost, $; 
IP(n) = the zero-one integer for well existence; 

 

K = total duration of the remediation period, 
i.e., 3 years, T; 

N = the total number of injection and extrac-
tion wells; 

Ne = the total number of extraction wells 
Ni = the total number of injection well, 
Z = the total cost of in situ bioremediation 

system, $. 

Objective2:  Minimize concentration: C (6) 

The cost parameter used in equation 5 is men-
tioned in Table 1. 

Table 1. Values of cost parameters used for equation (5)  

Coefficient Value 
ir 0.05 
CIP $ 12,000 per well 
Cq (for injection well) $ 4,755 (per Ls–1-year) 
Cq (for extraction well) $ 15,850 (per Ls–1-year) 
D (injection facility capital cost) D1.26Ls–1 = $ 20,000  
E (treatment facility capital cost) E1.26Ls–1 = $ 30,000  

Source: own study. 

Equations (5) and (6) are subject to the con-
straints enumerated in Equations (7) through (12), and 
handled through a penalty function: 

 ΦjjCjC K
s ∈∀≤≤ 00max0 )()(0  (7) 
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where:  
hk(j0) = the hydraulic head allowed at node j0

in period k, m; 
hmax(jo) = the maximum hydraulic heads al-

lowed at node j0 in period k, m; 
hmin(j0) = the minimum hydraulic heads allowed 

at node j0 in period k, m; 
k
ewq  = the extraction pumping rates during 

period k, L·s–1; 
k
iwq  = the injection pumping rates during 

period k, L·s–1; 
(max)k

ewq = the well capacity for extraction wells, 
L·s–1; 

(max)k
iwq = the well capacity for injection wells, 

L·s–1; L3·T–1; 
)( 0jC K

s  = the contaminant concentration/load at 
node j0 at the end of the remediation
period K, ppm; 

Cmax(j0) = the water quality goal at location j0, 
ppm; 

Φ = represents a set of all study area 
nodes where water quality and hy-
draulic head compliance must be at-
tained; 
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Ψ = a set of monitoring wells of the prob-
lem domain where water quality
compliance endure over the man-
agement period. 

DESCRIPTION OF HYBRID ALGORITHM 

In the present study, a hybrid algorithm, which 
combines three metaheuristic algorithms (i.e., DE, SA 
and NSGA II) implemented in MATLAB, was em-
ployed to solve the objective function (Eqs. 5, 6). The 
control parameters in DGS are listed in Table 2. In 
this hybrid algorithm, the full population was first 
split into N portions of random size and for each of 
these subpopulations a differential evolution, NSGA 
II and SA was performed randomly. The algorithm so 
developed is termed a DGS, as it is comprised of 
a hybrid algorithm formed by combining Differential 
evolution, Genetic algorithm and Simulated annealing 
approaches. The complete flowchart of the algorithm 
is depicted in Fig. 2. 

Table 2. Control parameters for DGS algorithm 

Algorithm Parameter Value 
chromosome size 52 
crossover probability 0.5 NSGA II 
mutation probability 0.01 
cooling schedule constant 0.87 SA 
reheating 5 
probability of crossover 0.95 DE 
scaling factor 1 

Source: own study. 

 
Fig. 2. Flowchart of the DGS algorithm;  

source: own elaboration 

COUPLING SVM WITH OPTIMIZATION TOOL 

During optimization of an in-situ bioremediation 
system, the pumping strategy is one of the most im-
portant decision variables on which the total cost of 
the remediation depends. The optimization algorithm 
searches the global optimal pumping strategy from 
a random set of pumping rates. For every random set 
of pumping strategy, the algorithm also checks if any 
constraint has been violated. Thus, for the specific 
problem considered in this study, one major constraint 

is that the maximum concentration in the aquifer 
should not be more than 5 ppm at the end of 3 years. 
Hence, to check this constraint, the simulation model 
needs to run for a particular pumping strategy so as to 
know whether there has been any violation of the con-
straint or not. The optimization algorithm would then 
call the simulation model for controlling the violation 
of constraint. Proxy simulators in place of real simula-
tors can be used to reduce the computational time of 
the optimal design. In the present study, the trained 
SVM was coupled with the hybrid algorithm (Fig. 3). 
A coupling was required as the trained SVM was the 
only tool able to generate, during the optimization 
process, hmax(jo), hmin(j0) and maximum contaminant 
concentration at the contaminant site for randomly 
generated pumping rates. The output through the 
SVM was further employed to satisfy the constraints 
of Eqs. 7–12, by using a penalty function in the DGS 
algorithm. In the case where constraints were satis-
fied, the algorithm would find the paretos for the mul-
ti-objective function.  

 
Fig. 3. Trained SVM coupled with the hybrid  

multi-objective algorithm source: own elaboration 

DETERMINING THE BEST COMPROMISE 
SOLUTION 

The Pareto front obtained from DGS was further 
employed in determining the best compromise solu-
tion. The mechanism, based on a fuzzy linear mem-
bership function, was applied in the present study to 
determine the best compromise solution. The mem-
bership value of each individual in the Pareto optimal 
set Fi was computed using the membership function 
[PANIGRAHI et al. 2010] defined as:  
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(Fi).  
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For each non-dominated solution k, the normal-
ized membership value (μ[k]) is defined as: [PANI-
GRAHI et al. 2010] 
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where: 
M = the number of objectives, 
Npareto = the number of paretos in the optimal 

front. 

The best compromise solution is one for which 
μ[k] is maximum. 

RESULTS AND DISCUSSION 

The study addressed five steps in the process of 
obtaining best solutions: (i) training a SVM for use as 
a virtual simulator in the optimization process, (ii) 
obtaining the best paretos on the basis of population 
size of the algorithm, (iii) comparing paretos obtained 
from various algorithms on the basis of IGD (Inverse 
Generational Distance), spacing and spread, (iv) de-
riving a best compromise solution using fuzzy logic 
and linear membership function, and (v) obtaining the 
best solution pumping rates. 

TRAINING OF SVM AS A VIRTUAL SIMULATOR 

A SVM served as a virtual simulator to BIO-
PLUME III. The input data for SVM were pumping 
discharge values selected using a random number 
generator, whereas its outputs were hmax(jo), hmin(j0) 
and maximum contaminant concentration. Pumping 
rates ranging between 0.45 and 1.26 L·s–1 were used 
as well discharge rates for potential injection and ex-
traction wells, with the fate of the plume being simu-
lated using BIOPLUME III. After each run, the 
hmax(jo) and hmin(j0) along with maximum contaminant 
concentration were obtained. The data set thus ob-
tained was further used in calibrating and validating 
the SVM. 

The number of data sets required for training and 
testing the SVM was determined using a trial and er-
ror method, such that 70% of the data was used in 
calibration, and the remainder for validation. The 
SVM was calibrated with 400 to 1200 data sets. Coef-
ficient of determination (R2) and RMSE (Root Mean 
Square Error) values were determined for each case. 
The R2 varied between 0.85 to 0.98, and the RMSE 
between 0.56 and 0.15 as the number of data sets in-
creased from 400 to 1200 (Fig. 4).  

 
Fig. 4. Coefficient of determination and RMSE (Root Mean 

Square Error) for data; source: own study 

As no change in the SVM performance occurred 
when the number of training data sets increased from 
1000 to 1200, 1000 data sets was chosen as the opti-
mum data set number for SVM model training. Of the 
1000 data set points, 700 served in calibration and the 
remainder in validation of the SVM. The R2 and 
RMSE values for actual output (from BIOPLUME III) 
and simulated output (from SVM) were 0.98 and 0.15, 
respectively, indicating that the SVM accurately pre-
dicted output values, and can thus be used effectively 
as a proxy simulator for BIOPLUME III. 

SELECTION OF BEST PARETOS  
BASED ON POPULATION SIZE 

The population size has always been a key pa-
rameter while determining the best Pareto solution. 
The proposed DGS algorithm was tested for popula-
tion sizes ranging from 50 to 750. The DGS and other 
algorithms (DE, NSGA II and SA) were each run in-
dependently on roughly 40 occasions. The Paretos 
obtained for small population sizes of 50, 100 and 150 
were not well-spaced (Fig. 5a–5c), while those ob-
tained with a greater population size were more diver-
gent (Fig. 5e, 5f).  

Increasingly larger population sizes (500, 750 and 
more) increase the computational time and the com-
plexity associated with the non-dominated sorting 
procedure for every generation. However, if the popu-
lation size is too low (i.e. 50 or 100) the possibility of 
obtaining a local optima is much greater than that of 
obtaining a global optimal value. A population size of 
250 yields well-spaced Paretos and results in a lower 
cost of remediation than population sizes of 50, 100 
and 150. A similar response of Paretos was obtained 
for various population sizes while using the DE, 
NSGA II and SA algorithms. On this basis, a popula-
tion size of 250 was adopted throughout the further 
steps of the compromise solution evaluation. 
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Fig. 5. Paretos obtained using DGS for population sizes of (a) 50, (b) 100, (c) 150, (d) 250, (e) 500 and (f) 750;  

source: own study 

COMPARISON OF DGS WITH OTHER 
METAHEURISTIC ALGORITHMS 

Low values of the Inverse Generational Distance 
(IGD), spacing and its spread (Tab. 2) were taken as 
representative of a better non-dominated solution 
when comparing the DE, NSGA and SA algorithms 
[DEB 2001]. The control parameter for the hybrid 
DGS algorithm (Tab. 2) and the control parameters 
used in NSGA, SA and DE algorithms were taken to 
be the same. The IGD matrix [KOTINIS 2010], Spac-
ing matrix [SCHOOT 1995] and Spread matrix [DEB et 
al. 2000] are expressed as: 
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where: 
�d = the mean value of all Euclidean distances; 

e
md = the distance between extreme solutions of 

two different Paretos of the mth objective 
function; 

di = the Euclidean distance between the ith solu-
tion and the nearest member of true pareto 
set, 

dk = the normalized distance between the true 
paretos and the computed paretos of the kth

objective function, 
P = the number of objective functions, 
Q = the set of objective functions. 

For a population size of 250, the performance 
analysis of the various algorithms (DE, DGS, NSGA 
II and SA) was based on IGD, spacing and spread. In 
a metaheuristic algorithm, the Paretos could vary with 
each run; therefore, to avoid errors in the values asso-
ciated with Paretos, around 40 independent runs were 
conducted for each algorithm. Mean and median val-
ues with box plots, the standard deviation, along with  
 

a) b)

c) d) 

e) f) 
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best and worst values (i.e., respectively, smallest and 
largest IGD, spacing and spread values) for all the 
performance parameters were calculated after the 40 
runs (Tab. 3). While IGD, spacing and spread values 
were similar across all algorithms, those of the DGS 
algorithm had the lowest values (Tab. 3). The box plot 
for the performance parameters (Fig. 6) represents the 
robust statistical parameters of median and quartile 
values. The lower, upper, median, 25% and 75% per-
centiles of the values of the performance matrix were  
 
Table 3. Performance for DE, DGS, NSGA II and SA 

Algo-
rithm 

Perform-
ance 

parameter 
Worst Best Mean Median Standard 

deviation

IGD 0.0289 0.0277 0.0285 0.0287 0.6·10-3 
Spacing 0.0210 0.0192 0.0200 0.0199 0.6·10-3 DE 
Spread 0.0810 0.0751 0.0781 0.0779 2.2·10-3 

IGD 0.0275 0.0262 0.0267 0.0269 0.46·10-3

Spacing 0.0170 0.0140 0.0153 0.0151 1.3·10-3 DGS 
Spread 0.0579 0.0544 0.0560 0.0564 1.39·10-3

IGD 0.0321 0.0294 0.0303 0.0300 1.05·10-3

Spacing 0.0201 0.0165 0.0180 0.0180 1.40·10-3NSGA II 
Spread 0.0793 0.0758 0.0770 0.0766 1.38·10-3

IGD 0.040 0.0350 0.0379 0.0382 2.1·10-3 
Spacing 0.0288 0.0247 0.0268 0.0268 1.5·10-3 SA 
Spread 0.0760 0.069 0.0733  0.0740 2.5·10-3 

Source: own study. 

 

 

 
Fig. 6. Box plot comparison of (a) IGD, (b) spacing and (c) 

spread for various algorithms; source: own study 

determined. The median values of IGD for the DGS 
algorithm (Fig. 6a) were close to the minimum value 
obtained from 40 independent runs of the algorithm. 
For spacing and spread (Figs. 6b and 6c, the box plot 
for DGS is skewed upward, but its values remain less 
than those obtained using the other algorithms. Thus, 
the relatively low values of IGD, spacing and spread 
suggest that the DGS is more robust than the other 
algorithms used in the present study. 

SELECTION OF THE BEST COMPROMISE 
SOLUTION 

The main aim of this study was to develop 
a methodology to minimize the total cost of remedia-
tion as well as the residual contaminant concentration 
at the contaminant site. A Pareto front was obtained 
when the study’s multi-objective optimization prob-
lem was solved through the use of the DGS algorithm. 
This Pareto front (Fig. 5) provides various solutions 
for the objective functions. All the solutions obtained 
are valid solutions and can thus be considered for im-
plementation. However, out of all these possible solu-
tions, a best compromise solution must be obtained. 
A fuzzy-based mechanism [ABIDO 2003; PANIGRAHI 
et al. 2010] was applied to obtain the best compromis-
ing solution from the Paretos obtained for a popula-
tion size of 250 (Fig. 5d). To reduce the residual con-
centration to 5 ppm, an approximate cost of $147 151 
is incurred, whereas, it requires $161 299 to reduce 
the residual concentration to 4.5 ppm (Fig. 7). The 
gradient of the obtained Pareto can be seen to increase 
substantially with an increase in cost although the 
reduction in residual concentration is relatively low 
(Fig. 7). For example, a reduction in the permissible 
limit of contaminant from 5 ppm to 4.6 ppm (0.4 
ppm) results in an increase in cost of remediation of 
roughly $6000, whereas a reduction from 4.65 ppm to 
4.5 ppm (0.15 ppm) results in a cost increase of 
$8197. It is therefore important to reach an optimal 
compromise solution so that the permissible concen-
tration is reduced as much as possible without  
 

 
Fig. 7. Best compromising solution obtained using a DGS 

for population size 250; source: own study 

a) 

b) 

c) 

Cost of remediation, $ 

B
TE

X
 c

on
ce

nt
ra

tio
n,

 p
pm

 



Multi-objective optimization of in-situ bioremediation of groundwater using a hybrid metaheuristic technique… 37 

 © PAN in Warsaw, 2015; © ITP in Falenty, 2015; Journal of Water and Land Development. No. 27 (X–XII) 

incurring a substantial increase in remediation cost. 
The result obtained in terms of co-ordinate of the ob-
tained Paretos suggests that the best compromising 
solution is obtained at (153100, 4.65). Thus the best 
strategy obtained in the present study is to remediate 
the contaminant site so that an initial concentration of 
40 ppm will be reduced to a permissible level of 4.65 
ppm after remediation, at a cost of $153 100.  

PUMPING STRATEGY FOR THE BEST 
COMPROMISING SOLUTION 

Management periods are groups of simulation 
time steps during which the pumping policy remains 
constant. However, over the course of the remediation 
period, the pumping rates are allowed to change. In 
this study, the pumping rates (negative for injection 
and positive for extraction) were allowed to change 
once in six months (Fig. 8), allowing the adjustment 
of pumping rates for injection and extraction wells so 
as to achieve the best compromise solution. The opti-
mization algorithm set the pumping rate of the extrac-
tion wells to a near minimum value in the first three 
management periods. Injection pumping rates were 
seen to decrease in the latter half of the remediation 
period (Fig. 8). On the other hand, the extraction rate 
continuously increases from the first management 
period to the sixth management period (i.e., from 0.53 
lps to 1.25 lps). The increased extraction rate checks 
the migration of plume towards monitoring wells.  
 

 
Fig. 8. Pumping rates for the best compromising solution;  
u = pumping well; e = extraction well; source: own study 

The under engineered in-situ bioremediation con-
dition following the pumping strategy for the best 
compromising solution BTEX concentration contour 
is shown in Fig. 8. From this figure, it can be seen that 
the BTEX concentration in the aquifer is 23 ppm, 12 
ppm and 4.65 ppm at the end of the first, second and 
third year respectively (Fig. 9a, 9b, 9c). 

CONCLUSIONS 

Among the several remediation techniques avail-
able for remediation of groundwater, in-situ bioreme-
diation is one of the most economic and eco-friendly 
technologies. Given the significant problems facing 
the  water  resources sector  [ADAMOWSKI et al. 2009; 

 

 

 
Fig. 9. BTEX contaminant contour (a) after 1 year (b) after 

2 years (c) after 3 years; source: own study 

2010; 2012a; ADAMOWSKI, PROKOPH 2013; ARAGHI 
et al. 2015; BELAYNEH et al. 2014; CAMPISI et al. 
2012; DANESHMAND et al. 2014; HAIDARY et al. 
2013; NALLEY et al. 2012; 2013; NAMDAR et al. 
2014; PINGALE et al. 2014; SAADAT et al. 2014; TI-
WARI, ADAMOWSKI 2014], new approaches such as 
the one proposed in this study are important to ex-
plore to facilitate the transition to more sustainable 
water resources management [BUTLER, ADAMOWSKI 
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2015; HALBE et al. 2013; INAM et al. 2015; KOLIN-
JIVADI et al. 2014a, b; MAHMOOD et al. 2015; MEDE-
MA et al. 2014a, b; SAADAT et al. 2011; STRAITH et 
al. 2014]. In this study, to accelerate the biodegrada-
tion process, an engineered bioremediation process 
was studied using a set of injection and extraction 
wells. Simulation of BTEX contaminant and its bio-
degradation was studied using BIOPLUME III. Fur-
ther, Support Vector Machine (SVM) was used as a 
proxy simulator to replace the actual simulation mod-
els so as to eventually enhance the computation effi-
ciency of any algorithm. This study also presents an 
application of a hybrid algorithm which combines 
three metaheuristic algorithms (Differential evalua-
tion, Genetic Algorithm, Simulated Annealing) in a 
single algorithm abbreviated as DGS. This hybrid 
algorithm served in multi-objective optimization of in 
situ bioremediation of groundwater, taking the cost of 
remediation and the permissible residual organic con-
taminant concentration as two separate objectives. 
Several sets of Paretos were then generated by vary-
ing the population size of the algorithm in this study. 
The results suggest that for a very small population 
size, the obtained Paretos are not uniformly spaced 
and diverged. A similar behaviour is also observed 
when very large population sizes of the algorithm are 
assumed. The Paretos obtained for a population size 
of 250 were found to be well spaced and well di-
verged for DGS. Further, the best compromise solu-
tion was obtained by adopting fuzzy logic and the 
associated pumping pattern was derived.  
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Deepak KUMAR, Sudheer CH, Shashi MATHUR, Jan ADAMOWSKI 

Wielozadaniowa optymalizacja bioremediacji wód gruntowych in situ z zastosowaniem  
hybrydowej techniki metaheurystycznej opartej na zróżnicowanej ewolucji, algorytmach genetycznych  
i symulowanym wyżarzaniu 

STRESZCZENIE 

Słowa kluczowe: bioremediacja in-situ, algorytm hybrydowy, algorytm genetyczny, logika rozmyta, maszyna 
wektorów nośnych (SVM), symulowane wyżarzanie, wody gruntowe, zróżnicowana ewolucja  

Zanieczyszczenie wód gruntowych wyciekami benzyny jest jedną z kilku przyczyn wpływających na śro-
dowisko wód podziemnych. W ostatnich latach bioremediacja in situ przyciągała uwagę badaczy z powodu jej 
zdolności do usuwania zanieczyszczeń w ich siedlisku i niskich kosztów procesu. Przedstawiona praca proponu-
je użycie nowego algorytmu hybrydowego do optymalizacji wielozadaniowej funkcji, która obejmuje koszty 
remediacji jako pierwsze zadanie i resztową zawartość zanieczyszczeń po zakończeniu procesu jako drugie 
z zadań. Algorytm hybrydowy powstał z połączenia metod różnicowej ewolucji, algorytmu genetycznego i sy-
mulowanego wyżarzania. Maszyna wektorów nośnych (SVM) została użyta jako wirtualny symulator biologicz-
nej degradacji zanieczyszczeń w wodach gruntowych. Wyniki uzyskane z algorytmy hybrydowego porównano 
z wynikami zróżnicowanej ewolucji (DE), algorytmu genetycznego (NSGA II) i symulowanego wyżarzania 
(SA). Stwierdzono, że proponowany algorytm był w stanie zapewnić najlepsze rozwiązanie. Użyto metody 
z zakresu logiki rozmytej dla znalezienia najlepszego rozwiązania kompromisowego i na końcu przedstawiono 
dla tego rozwiązania strategię szybkości pompowania celem remediacji wód gruntowych. Wyniki pokazały, że 
koszty ponoszone na rozwiązanie kompromisowe są pośrednie między najwyższymi i najniższymi kosztami in-
nych rozwiązań.  
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