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Abstract 

There are several methods and techniques for measuring the parameters and forecasting the errors in the 
hydrological models. In this study, semi distributed Soil and Water Asseeement Tool (SWAT) model and 
SWAT-CUP (CUP – Calibration and Uncertainty Programs) have been applied using SUFI2 program. After col-
lection of data, the whole Talar watershed located in the central section of the Alborz Mountains, north of Iran 
was separated into 219 hydrological response units (HRU) in 23 sub-watersheds. 

In order to improve the simulation parameters and obtain better correlation of observed and simulated val-
ues, the sensitive parameters were validated to obtain finally the acceptable value of both R2 and Nash–Sutcliffe 
(NS) coefficients equal to 0.93. Final P-value and t-state were also estimated for sensitive parameters. As a re-
sult, the CN2 parameter, which was critical in the initial stage of this research was replaced by the SOL-K pa-
rameter (electrical conductivity saturated soil layers) as a critical parameter in the later stage. Results of this 
study show that the SWAT model can be an effective and useful tool for the assessment and optimal manage-
ment of water and soil resources. 
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INTRODUCTION 

Higher standards of living, demographic changes, 
land and water use policies, and other external forces 
are increasing pressure on local, national and regional 
water supplies needed for irrigation, energy produc-
tion, industrial uses, domestic purposes, and the envi-
ronment [KLØVE et al. 2014]. Hydrological models 

are important tools for planning sustainable use of 
water resources to meet various demands. Sustainable 
watershed management requires thorough knowledge 
of water resources, including streamflow [BELYANEH, 
ADAMOWSKI 2013; NOOR et al. 2014; WOJAS, TYSZE-
WSKI 2013]. Therefore, understanding the hydrologic 
processes in a watershed and their prediction are chal-
lenging tasks of hydrologists [PHOMCH et al. 2011].  
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Distributed hydrologic models have important 
applications in interpretation and prediction of the 
effects of land use change and climate variability on 
parameters pertaining directly to physically observ-
able land surface characteristics. In particular, physi-
cally based distributed hydrological models, whose 
input parameters have a physical interpretation and 
explicit representation of spatial variability, are used 
to solve complex problems in water resource man-
agement [BEVEN 1989; 2002; SOROOSHIAN, GUPTA 
1995]. Initial parameters for distributed datasets de-
scribe soils, vegetation, and land use; however, these 
so-called physically based parameter values are often 
adjusted through subsequent calibration to improve 
streamflow simulations. In other words, some model 
parameters are physically based and can be measured 
while in some models parameters can only be esti-
mated by calibration [ANDERTON et al. 2002; BEVEN 
2006; BEVEN, BINLEY 1992; BEVEN, FREER 2001; 
BOYLE et al. 2000; DUAN et al. 1992; 1994; GUPTA et 
al. 1998; REFSGAARD 1997; YAPO et al. 1996].  

The Soil and Water Assessment Tool (SWAT) 
[ARNOLD et al. 1998] has been applied as a physically 
based hydrologic model to manage and assess water 
resources, including arid regions of northwest China 
[GASSMAN et al. 2007; HUANG, ZHANG 2004; 2010; 
LI et al. 2009; 2010; 2011; LIU et al. 2012; WANG et 
al. 2003]. The SWAT program is a comprehensive, 
semi-distributed, continuous-time, processed-based 
model [ARNOLD et al. 2012; GASSMAN et al. 2007; 
NEITSCH et al. 2005]. The program can be used to 
build models to evaluate the effects of alternative 
management decisions on water resources and the 
non-point source pollution in large river basins.  

The hydrological component of SWAT (Fig. 1) 
allows explicit calculation of different water balance 
components, and subsequently water resources (e.g., 
blue and green waters) at a sub basin level. In SWAT, 
a watershed is divided into multiple sub-basins, which 
are then further subdivided into hydrologic response 
units (HRUs) that reflect the unique land use, man-
agement, topographical, and soil characteristics. Sim-
ulation of watershed hydrology is done in the land 

 
Fig. 1. Schematic illustration of the conceptual water  

balance model in SWAT; R = rainfall,  
ET = evapotranspiration, I = infiltration, RO = runoff,  

RF = return flow, LF = lateral flow, CF = capillary flow,  
AR = aquifer recharge, DAR = deep aquifer recharge,  

S = soil moisture; source: own elaboration 

phase, which controls the amount of water, sediment, 
nutrient, and pesticide loadings to the main channel in 
each sub-basin and in the routing phase, which is the 
movement of water, sediments, etc., through the 
streams of the sub-basins to the outlets. The hydro-
logical cycle is climate driven and provides moisture 
and energy inputs, such as daily precipitation, maxi-
mum/minimum air temperature, solar radiation, wind 
speed, and relative humidity that control the water 
balance. Snow is computed when temperatures are 
below freezing, and soil temperature is computed be-
cause it affects water movement and the decay rate of 
residue in the soil.  

Hydrologic processes simulated by SWAT in-
clude canopy storage, surface runoff, and infiltration. 
In the soil the processes include lateral flow from the 
soil, return flow from shallow aquifers, and tile drain-
age, which transfer water to the river; shallow aquifer 
recharge, capillary rise from shallow aquifer into the 
root zone, and finally deep aquifer recharge, which 
removes water from the system. Other processes in-
clude moisture redistribution in the soil profile, and 
evapotranspiration. Optionally, pumping, pond stor-
ages, and reservoir operations could also be consid-
ered. The water balance for reservoirs includes in-
flow, outflow, rainfall on the surface, evaporation, 
seepage from the reservoir bottom, and diversions. 
Addressing vegetation growth is essential in a hydro-
logical model as evapotranspiration is an important 
component of water balance, and management opera-
tions such as irrigation [FARAMARZI et al. 2009] and 
fertilization have a large impact on hydrology and 
water quality, respectively. SWAT uses single plant 
growth model to simulate growth and yield of all 
types of land covers and differentiates between annual 
and perennial plants. In addition, SWAT simulates the 
movement and transformation of several forms of 
nitrogen and phosphorus, pesticides, and sediment in 
the watershed. SWAT allows users to define man-
agement practices taking place in every HRU. Once 
the loadings of water, sediment, nutrients, and pesti-
cides from the land phase to the main channel have 
been determined, the loads are transported through the 
streams and reservoirs within the watershed. More 
details on the SWAT can be found in the theoretical 
documentation (http://swatmodel.tamu.edu) and in 
paper by ARNOLD et al. [1998]. However, the SWAT 
was designed based on the soil, vegetation, and hy-
drological structure of North America. The databases 
about soil and vegetation this model comes with are 
different from the actual situation somewhere else. In 
order to efficiently and effectively apply the SWAT 
model, different calibration methods have been devel-
oped and applied to improve the prediction reliability 
of the SWAT simulations, including manual and au-
tomated calibration [BEKELE, NICKLOW 2007; CAO et 
al. 2006; ECKHARDT, ARNOLD 2001; KANNAN et al. 
2008; LU et al. 2012; NIRAULA et al. 2012; WHITE, 
CHAUBEY 2005; ZHANG et al. 2008; 2009a, b; 2010]. 
For example, ZHANG et al. [2009a] proposed a com-
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bined method, which implemented Genetic Algo-
rithms (GA) and Bayesian Model Averaging (BMA), 
to conduct calibration by comparing multiple model 
structures. The SWAT model was used to simulate the 
hydrologic processes of Yingluoxia watershed. The 
model uses readily available inputs, is computation-
ally efficient for use in large watersheds and is capa-
ble of simulating long-term yields for determining the 
impact of land management practices [ARNOLD, AL-
LEN 1996]. SWAT allows a number of different phys-
ical processes to be simulated in a basin. The hydro-
logic routines within SWAT account for snow fall and 
melt, vadose zone processes (e.g., infiltration, evapo-
ration, plant uptake, lateral flows, and percolation) 
and ground water flows. The hydrologic cycle that is 
simulated by SWAT is based on the water balance 
equation: 

 ∑
=

−−−−+=
t

i
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where: SWt = the final soil water content (mm); SW0 
= the initial soil water content on day i (mm); t = time 
(days); Rday = the amount of precipitation on day i 
(mm); Qsurf = the amount of surface runoff on day i 
(mm); Ea= the amount of evapotranspiration on day i 

(mm); Wseep = the amount of water entering the vadose 
zone from the soil profile on day i (mm); Qgw= the 
amount of return flow on day i (mm).  

Figure 1 shows schematic illustration of the con-
ceptual water balance model in SWAT.  

Application of SWAT model – watershed de-
lineation. The DEM was used to generate flow direc-
tion and flow paths within the Geographic Informa-
tion System (GIS). The watershed outlet was defined 
at the Shirgah gauge, which is located on the main-
stream and controls the runoff from the mountainous 
watershed. Considering that the hydrologic response 
units (HRUs) were often spatially discontinuous and 
the values of the surface runoff lag time were identi-
cal to a sub-basin in the SWAT model, the areas of 
the sub-basins were as small as theoretically possible. 
This watershed was divided into 23 sub-basins (Fig. 
2). In the Talar watershed, the land use types were 
divided into 6 categories based on the dominant spe-
cies and constructive species and the soil was catego-
rized into 36 types. The vegetation, soil and slope 
layers were overlaid to create hydrologic response 
units (HRUs) within each sub-basin. A total of 219 
HRUs were created in the Talar watershed.  

     
Fig. 2. Digital Elevation Model of Talar watershed in Mazandaran province of Iran; source: own study based on data  

from Mazandaran Regional Water Authority; source: own elaboration 

MATERIALS AND METHODS 

STUDY AREA 

The Talar watershed is located in the Central sec-
tion of the Alborz Mountains, north of Iran. Accord-
ing to the Project Report of Talar watershed [2000], 
most of the precipitation in the study area takes place 
as rain. The maximum and minimum mean annual 
precipitations recorded were 900 and 200 mm, respec-
tively. Figure 1 shows the Talar watershed located 
within 35°44’ to 36°19’ N latitudes and 53°23’ to 
52°35’ E longitudes. The outlet stream gauging sta-
tion is Shirgah with an area of 2100.9 km2 that was 
selected to perform evaluation of SWAT. Data of 
eight climatology stations located inside the catch-
ment were analyzed. The topographical elevation of 
the study area varies between 215 and 3910 m a.s.l. 
The land use of the study watershed comprises poor 
and good rangelands, orchids, agriculture and others 
types of land use. The soil textures of the watershed 

are mainly silty loam, silty clay, loamy clay and clay-
ish loam [Project... 2000].  

INPUT DATA REQUIRED 

SWAT model needs a lot of data to be defined for 
the physical watershed. The data should include to-
pography (Digital Elevation Model), climate (daily 
and monthly weather data), and both soil and land use 
(maps and physical parameters). 

Availability and quality of the data on watershed 
will affect the accuracy of model prediction. Daily 
runoff, precipitation and temperature data were col-
lected from the Mazandaran Regional Water Authori-
ty and Mazandaran Meteorological Organization, 
(Tab. 1). Land use map for the recent years was de-
rived from image processing using TM image. A digi- 
tal elevation model (DEM) was taken from the organ-
ization of forest, range and watershed in Mazandaran 
Province (grid: 50 m × 50 m); a pedological soil map 
was available  from the report of this  organization to-  
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Table 1. List of selected precipitation and temperature sta-
tions in Talar watershed 

Station name Main river Longitude Latitude Altitude 
m 

Shirgah Talar 52°53’10” 36°17’57”    220 
Valikbon Kasilian 53°10’24” 36°05’46” 1 106 
Shirgah Kasilian 52°53’14” 36°18’05”    220 

Pole sefid Talar 53°03’31” 36°06’44”    580 
Palandroodbar Sheshroodbar 52°54’08” 36°01’13” 1 218 

Shirgah Talar 52°53’10” 36°17’57”    220 
Valikchal Kasilian 53°13’00” 36°05’55” 1 500 
Pole sefid Talar 53°03’55” 36°06’24”    580 

Kale Kasilian 53°09’45” 36°04’11” 1 557 
Sodkola Kasilian 53°11’26” 36°05’45” 1 250 

Darzikola Kasilian 53°12’14” 36°04’08” 1 300 
Alasht Talar 52°50’21” 36°04’10” 1 680 

Palandroodbar Sheshroodbar 52°54’11” 36°01’13” 1 225 
Shirgah Talar 52°53’30” 36°18’20”    259 
Sangdeh Kasilian 53°13’42” 36°03’36” 1 337 

Source: own elaboration. 

gether with some textural soil profile descriptions for 
all the major soils. The first step was watershed de-
lineation which split the basin into 23 sub basins ac-
cording to the terrain and river channels. Further divi-
sion into multiple hydrological response units (HRUs) 
comprising unique land use, soil, and land use man-
agement was based on user-defined threshold percent-
ages [ARNOLD et al. 1998]. HRUs are the fundamental 
modeling units within SWAT, and sub-catchments 
can be composed of one or several HRUs by specify-
ing relative area thresholds for each defining compo-
nent [NEITSCH et al. 2011]. In this study, the overlay 
of soil and land use maps resulted in 219 HRUs. The 
next step was the uploading of precipitation and 
weather data files. The final stage was writing input 
files with required input data for the project. This 
simulation passed through three consecutive separate 
periods. These, as well as their durations, were: (i) the 
setup (also known as warm-up) period (1 year); (ii) 
the calibration period (4 years), and (iii) the validation 
period (2 years).  

SWAT-CUP2 – SWAT Calibration and Uncertainty 
Programs 

Calibration and uncertainty analysis of distributed 
watershed models is beset with a few serious issues 
that deserve the attention and careful consideration of 
researchers. These are: 
1) parameterization of watershed models,  
2) definition of what is a “calibrated watershed mod-

el” and what are the limits of its use,  
3) conditionality of a calibrated watershed model, 
4) calibration of highly managed watersheds, where 

natural processes play a secondary role, 
5) uncertainty problems.  

SUFI2 (Sequential Uncertainty Fitting) – Conceptual 
basis of the SUFI-2 uncertainty analysis routine 

In SUFI-2, parameter uncertainty accounts for all 
sources of uncertainties such as uncertainty in driving 
variables (e.g., rainfall), conceptual model, parame-

ters, and measured data. The degree to which all un-
certainties are accounted for is quantified by a meas-
ure referred to as the P factor, which is the percentage 
of measured data bracketed by the 95% prediction 
uncertainty (95PPU). As all the processes and model 
inputs such as rainfall and temperature distributions 
are correctly manifested in the model output (which is 
measured with some error) – the degree to which we 
cannot account for the measurements – the model is in 
error; hence uncertain in its prediction. Therefore, the 
percentage of data captured (bracketed) by the predic-
tion uncertainty is a good measure to assess the 
strength of our uncertainty analysis. The 95PPU is 
calculated at the 2.5% and 97.5% levels of the cumu-
lative distribution of an output variable obtained 
through Latin hypercube sampling, disallowing 5% of 
the very bad simulations. As all forms of uncertainties 
are reflected in the measured variables (e.g., dis-
charge), the parameter uncertainties generating the 
95PPU account for all uncertainties. Breaking down 
the total uncertainty into its various components is 
highly interesting, but quite difficult to do, and as far 
as the author is aware, no reliable procedure yet ex-
ists. Another measure quantifying the strength of 
a calibration/uncertainty analysis is the R factor, 
which is the average thickness of the 95PPU band 
divided by the standard deviation of the measured 
data. SUFI-2 hence seeks to bracket most of the 
measured data with the smallest possible uncertainty 
band. The concept behind the uncertainty analysis of 
the SUFI-2 algorithm is depicted graphically in Figure 
3. This figure illustrates that a single parameter value 
(shown by a point) leads to a single model response 
(Fig. 3a), while propagation of the uncertainty in 
a parameter (shown by a line) leads to the 95PPU il-
lustrated by the shaded region in Figure 3b. As pa-
rameter uncertainty increases, the output uncertainty 
also increases (not necessarily linearly) (Fig. 3c). 
Hence, SUFI-2 starts by assuming a large parameter 
uncertainty (within a physically meaningful range), so 
that the measured data initially falls within the 
95PPU, then decreases this uncertainty in steps while 
monitoring the P factor and the R factor. In each step, 
previous parameter ranges are updated by calculating 
the sensitivity matrix (equivalent to Jacobian), and 
equivalent of a Hessian matrix, followed by the calcu-
lation of covariance matrix, 95% confidence intervals 
of the parameters, and correlation matrix. Parameters 
are then updated in such a way that the new ranges are 
always smaller than the previous ranges, and are cen-
tered around the best simulation. The goodness of fit 
and the degree to which the calibrated model accounts 
for the uncertainties are assessed by the above two 
measures. Theoretically, the value for P factor ranges 
between 0 and 100%, while that of R factor ranges 
between 0 and infinity. A P factor of 1 and R factor of 
zero is a simulation that exactly corresponds to meas-
ured data. The degree to which we are away from 
these numbers can be used to judge the strength of our 
calibration.  A larger P factor  can be  achieved  at the 
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Fig. 3. Illustration of the relationship between parameter  

uncertainty and prediction uncertainty; a, b, c = the larger will be 
the 95PPU (d). If parameters are at their maximum physical limits 

and the 95PPU does not bracket the measured response, then model 
must be re-evaluated; source: own elaboration 

 
expense of a larger R factor. Hence, a balance must 
often be reached between the two. When acceptable 
values of R factor and P factor are reached, then the 
parameter uncertainties are the desired parameter 
ranges. Further goodness of fit can be quantified by 
the R2 and/or Nash–Sutcliff (NS) coefficient between 
the observations and the final “best” simulation. It 
should be noted that we do not seek the “best simula-
tion” as in such a stochastic procedure the “best solu-
tion” is actually the final parameter ranges. If initially 
we set parameter ranges equal to the maximum physi-
cally meaningful ranges and still cannot find a 95PPU 
that brackets any or most of the data, for example, if 
the situation in Figure 3d occurs, then the problem is 
not one of parameter calibration and the conceptual 
model must be re-examined.  

Automated model calibration requires that the 
uncertain model parameters are systematically 
changed, the model is run, and the required outputs 
(corresponding to measured data) are extracted from 
the model output files. The main function of an inter-
face is to provide a link between the input/output of 
a calibration program and the model. The simplest 
way of handling the file exchange is through text file 
formats. SWAT-CUP is an interface that was devel-
oped for SWAT. Using this generic interface, any 
calibration/uncertainty or sensitivity program can eas-
ily be linked to SWAT. In this study we used the 
SWAT-CUP package [ABBASPOUR et al. 2008] to link 
between calibration algorithm and hydrologic model. 

Model performance evaluation 

Performance was evaluated through visual inter-
pretation of the simulated hydrographs and commonly 
used statistical measures of agreement between meas-
ured and simulated streamflow. Several statistical 
approaches were used to check the model perform-

ance, viz. coefficient of determination (R2) and Nash-
Suttcliffe efficiency (NS) [AHL et al. 2008; MORIASI 
et al. 2007; RAHMAN et al. 2013]. The R2 value is an 
indicator of relationship strength between the ob-
served and simulated values. Values of the NS coeffi-
cient can range from negative infinity to 1. NS coeffi-
cients greater than 0.75 are considered “good”, 
whereas values between 0.75 and 0.5 as “satisfactory” 
[RAHMAN et al. 2013]. 

RESULTS AND DISCUSSION  

After providing the required input data, SWAT 
was run for daily streamflow in the Talar River. The 
first in this study, 21 parameters of the SWAT affect-
ing the streamflow were identified through a sensitiv-
ity analysis and detailed literature review that are 
shown in Table 2. The absolute ranges of parameter 
values were taken directly from the SWAT user’s 
manual [NEITSCH et al. 2011]. In the Talar watershed, 
calibration of groundwater flow was controlled by 
ALPHA_BF and GW_DELAY. The base flow reces-
sion coefficient (ALPHA_BF) is a direct index of 
ground water flow response to changes in recharge. 
GW_DELAY is the lag between the time water exits 
the soil profile and enters the shallow aquifer 
[NEITSCH et al. 2011]. Reducing ALPHA_BF slows 
the aquifer response to recharge, causing a reduction 
in the annual runoff peak during snowmelt but mak-
ing more water available for streamflow later in the 
year. Reducing the value of the ground-water delay 
parameter (GW_DELAY) affects both the width of 
 
Table 2. Calibration range of selected SWAT model para-
meters 

Row number Parameter name Minimum 
value 

Maximum 
value 

1 r__CN2.mgt –0.2 0.2 
2 v__ALPHA_BF.gw 0 1 
3 v__GW_DELAY.gw 30 450 
4 v__GWQMN.gw 0 2 
5 r__GW_REVAP.gw 0.09 0.274 
6 r__ESCO.hru 0.878 1.038 
7 r__CH_N2.rte 0.114 0.348 
8 r__CH_K2.rte 22.278 79.778 
9 –r__ALPHA_BNK.rte –0.249 0.589 
10 r__SOL_K().sol –0.8 0.8 
11 r__SOL_AWC().sol –0.2 0.2 
12 r__EPCO.hru 0.01 1 
13 r__PLAPS.sub 0 100 
14 r__RCHRG_DP.gw 0 1 
15 r__REVAPMN.gw 0 500 
16 r__SFTMP.bsn –5 5 
17 r__SMFMN.bsn 0 100 
18 r__SMTMP.bsn –5 5 
19 r__TIMP.bsn 0.01 1 
20 r__TLAPS.sub –10 0 
21 r__SMFMX.bsn 0 100 

Explanations: v means that the existing parameter value is to be 
replaced by the given value and r means that the existing parameter 
value is multiplied by (1+ a given value). 
Source: own study. 
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the peak discharge and the quantity of water available 
for base flow [AHL et al. 2008]. CN2 is the most im-
portant parameter in calibration of SWAT [BANASIK, 
WOODWORD 2010; TEDELA et al. 2013; WOODWARD 
et al. 2006] and contributes directly to surface runoff 
generation. SOL_AWC and SOL_K represent soil 
moisture parameters in the calibration process. 
SOL_AWC or plant available water is estimated as 
the difference in soil water content between field ca-
pacity and the wilting point. SOL_K or saturated hy-
draulic conductivity relates soil water flow rate to the 
hydraulic conductivity [NEITSCH et al. 2011]. 

Scatter plot of P-value and t-state is shown in 
Fig. 4. Due to the low coefficient of R2 (0.01) and 
Nash–Sutcliffe (44.15), the next step of validation of 
the model improve coefficient R2 to 0.79 and Nash–
Sutcliffe to 0.78. Figures 4 and 5 show scatter plots of 
P value index and t-state in the SWAT-CUP model 
validation stage. Figure 6 also shows an indicators 
chart of P value and t-stat calculated in the first step 
in the validation of selected parameters.  

In fact, primary calibration and validation were 
the test phase of selecting sensitive parameters to per-
form the secondary phase of calibration and valida-
tion. Based on results of the first stage, sensitive pa-
rameter presented in Table 3 were re-calibrated and 
validated until simulation parameters were within ac-
ceptable limits. 

Table 3. Daily stream flow of sensitive parameters and their 
ranges derived from calibration of SWAT-CUP model using 
SUFI2 software 

Parameter name Minimum value Maximum value 
r__CN2.mgt –0.2 0.2 

v__GW_DELAY.gw 30 450 
v__GWQMN.gw 0 2 

r__CH_K2.rte –22.278 79.778 
r__SOL_K().sol –0.8 0.8 

r__SOL_AWC().sol –0.2 0.2 
r__RCHRG_DP.gw 0 1 

r__TLAPS.sub –10 0 

Source: own study. 

In the first stage of calibration of sensitive pa-
rameters, R2 and Nash–Sutcliff coefficients achieved 
the values of 0.02 and –38.28 respectively. Validation 
of sensitive parameters gave the final both R2 and 
Nash–Sutcliff coefficients of 0.93. This result was in 
the acceptable simulation range. Figure 8 shows scat-
terplots of the number of sensitive parameters and 
Table 4 lists the rating of simulation parameters that 
are within acceptable simulation. 

In this research, 21 parameters were selected in 
the calibration and validation phases. The choice of 
these 21 parameters was based on the role and impor-

tance of these factors in the development and creation 
of runoff. 

Most of these important parameters such as CN2 
(moisture condition curve number), SOL_(K) (satu-
rated hydraulic conductivity of the first layer), 
CH_K2 (effective hydraulic conductivity in the main 
channel alluvium – mm·h–1), ALPHA_BF (baseflow 
recession constant), (GW_REVAP) groundwater ‘re-
vap’ coefficient, ESCO (soil evaporation compensa-
tion factor), EPCO (plant evaporation compensation 
factor) were also considered important by other re-
searchers. CHEN and WU [2012] used parameters such 
as CN2 (percentage of SCS curve number adjust-
ment), SURLAG surface runoff lagtime (day), 
CH_K2 channel hydraulic conductivity (mm·day–1), 
SOL_AWC available water capacity of the soil. An-
other researchers used from 10 [WANGPIMOOL et al. 
[2013] to 27 XIE and LIAN [2013] parameters. Cited 
studies and those not cited show a high similarity in 
the selection of sensitive parameters. For example, in 
this study CN2 (moisture condition curve number) 
parameter was found significant. Here, the program 
SUFI2 for validation and SWAT model was used to 
determine the uncertainty in choosing SWAT-CUP 
extensions. Some researchers used other options. For 
example, XIE and LIAN [2013] used GLUE program 
of SWAT-CUP and SINGH et al. [2013] used SUFI2 
and GLUE program for estimation of parameters and 
uncertainty of analysis in the Tungabhadra catchment 
of India. LU et al. [2015] in their study obtained R2 
and Nush–Sutcliff coefficients of 0.81 and 0.94 re-
spectively. Since their study was performed in an area 
of similar climatic conditions, their results can be 
compared and contrasted with ours. The results of the 
final P value and t-state also varied among 8 selected 
parameters so that CN2 – the most sensitive parame-
ters in the first stage, was ranked second while 
SOL_K (saturated hydraulic conductivity of the first 
layer) appeared most sensitive at this phase. After two 
parameters also GW_DELAY.gw, SOL_AWC.sol, 
 RCHRG-DP.gw, GWQ Min.gw, CH_K2.rte obtained 
further ranking in sensitive parameters. In total, there 
was a good fit of simulated and observed discharges 
after 1500 time model simulations in the second stage 
of simulation. It was found that maximum precipita-
tion related to days and months with high precipita-
tion and in the days without precipitation, the value of 
simulation was zero due to the neglect of base water 
and groundwater of the Talar watershed by the model. 
During the validation process, after multiple simula-
tions, the range of uncertainty around the default val-
ues was gradually decreasing and set in the best range 
of simulation model. Other researchers used different 
methods to evaluate the performance of calibration 
and analysis of uncertainty [ABBASPOUR et al. 2015, 
SETHGEN et al. 2010]. 
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Fig. 4. Scatterplots of selected parameters in the calibration phase with SUFI2 software of SWAT-CUP model;  

source: own study 
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Fig. 5. Scatterplots of selected parameters in the validation phase with SUFI2 software of SWAT-CUP model;  

source: own study 
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Fig. 6. Indicator chart of P value and t-stat, calculated for the first step in the validation of selected parameters;  

source: own study 
 

 
Fig. 7. Scatterplots of critical parameters in calibration 

SWAT-CUP model using the SUFI2 software;  
source: own study 

 
Fig. 8. Scatterplots of sensitive parameters in the model  

validation stage with SWAT-CUP model using the SUFI2  
software; source: own study 
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Table4. Ranking of critical parameters in the validation phase of the model 

Best-goal=9.321237e-001 Best-sim-no=141 No-sims=1500 Goal-type=Nash-Sutcliff 
Max value Min value Fitted value Parameter name 

200000/0  200000/0-  0022267/0  1- R_CN2.mgt 
200000/0  200000/0-  014267/0  2- R_SOL-AWC(..).sol  -2  
000000/450  000000/30  340000/41  3- V_GW_DELLAY.gw   -3  

800000/0  800000/0-  043200/0  4-R_SOL_K(..).sol 
000000/0  000000/0  000000/0  5- R_RCRG_DP.gw 
000000/0  000000/0  000000/0  6- R_GWQMIN.gw 
778000/79  278000/22-  140301/0  7- R_CH_K2.rte 
000000/0  000000/10-  590000/5-  8- R_TLAPS.sub 

0022267/0014267/0340000/41043200/0000000/0000000/0140301/0590000/5-  
0022267/0  r_CN2.mgt 
014267/0  r_SOL_AWC(..).sol 
340000/41  v_GW_DELLAY.gw 

043200/0 r_SOL_K(..).sol 
000000/0  r_RCRG_DP.gw 
000000/0  r_GWQMIN.gw 
140301/0  r_CH_K2.rte 

 

590000/5-  r_TLAPS.sub 

Source: own study. 

CONCLUSION 

In our study we used several indexes for the determi-
nation of model efficiency for simulation. Out of 21 
selected parameters, 8 gave the acceptable range after 
1500 simulations. In general, good forecasting of 
maximum discharge by the model was not accompa-
nied by a high correlation between the time to peak of 
simulated discharge and the output value especially in 
spring season, which was caused by a lack of fitness 
of the SCS method in complete simulations consider-
ing runoff of snowmelt in mountainous area [CHU, 
SHIRMOHAMMADI 2004; ROSTAMIAN et al. 2010]. 
Noteworthy, the difference in altitude in the study 
region between mountain and lowland area is about 
3695 m and annual coefficient of snow factor of the 
area is estimated at 21.9%. It is the fact that can be 
examined. Base time for calibration and validation of 
the SWAT model was from hydrological years 2003–
2004 until 2006–2007 with 4 years for calibration and 
hydrological years 2008–2009 until 2009–2010 with 
2 years for validation model in the daily scale. Due to 
low values of P factor and r factor in the first stage of 
this research, observed values fell out of 95% confi-
dence intervals (see weak simulation in this stage). 
This problem was improved in further simulations and 
finally decreased the range of uncertainty. Certain 
principles of acceptable range of coefficient R2 are not 
provided, but value about 0.5 for hydrological model 
adopted in this study after SANTHI et al. [2001], in-
creased the coefficient to 0.93. Another coefficient of 
the study was Nush–Sutcliff coefficient, which also 
was improved to 0.93 in the final stage of simulation. 
GASSMAN et al. [2007] and SANTHI et al. [2001] stud-
ies showed also that values above 0.5 gave the best 
range of this coefficient. Therefore, our results allow 
for the following suggestions in this regard: 

1. Use a wide range of programs such as GLUE, 
ParaSol, MCMC of SWAT model to compare the ef-
fects of hydrological simulation. 

2. Run SWAT model in regions with similar and 
different climatic condition and analyze the effect of 
those conditions on the selection and use of models. 
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Modelowanie przepływu w zlewni rzeki Talar (środkowa część gór Alborz w północnym Iranie):  
Parametryzacja i analiza niepewności za pomocą SWAT-CUP  

STRESZCZENIE 

Istnieje kilka metod i technik pomiaru parametrów oraz przewidywania błędów w modelach hydrologicz-
nych. W prezentowanej pracy zastosowano modele SWAT i SWAT-CUP z użyciem programu SUFI2. Po zgro-



Hydrological stream flow modeling on Talar catchment(Central section of Alborz mountain, north of Iran)… 69 

 © PAN in Warsaw, 2016; © ITP in Falenty, 2016; Journal of Water and Land Development. No. 30 (VII–IX) 

madzeniu danych cała zlewnia rzeki Talar, zlokalizowana w środkowej części gór Alborz w północnym Iranie, 
została podzielona na 219 jednostek hydrologicznych (HRU) w 23 podzlewniach.  

W celu usprawnienia parametrów symulacji oraz lepszego powiązania wartości symulowanych i obserwo-
wanych zweryfikowano parametry wrażliwe, co w efekcie doprowadziło wartości R2 i współczynnika Nasha–
Sutcliffa (NS) do akceptowalnej wartości 0,93. Dla tych parametrów ustalono także końcowe wartości P i t. 
W wyniku przeprowadzonej analizy parametr CN2, krytyczny na wstępnym etapie badań, został zastąpiony pa-
rametrem SOL-K (przewodnictwo elektrolityczne nasyconej warstwy gleby). Wyniki badań świadczą, że model 
SWAT może być wydajnym i użytecznym narzędziem w ocenie oraz optymalnym zarządzaniu zasobami wody 
i gleby.  

 
Słowa kluczowe: badanie dokładności modelu, opad-odpływ, parametry wrażliwe, SWAT-CUP, zlewnia rzeki 
Talar  
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