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1. INTRODUCTION
A piston ring is a split ring used in internal combustion engines 
for three main functions:

• to seal the combustion chamber against the transfer of 
the gasses into the crankcase,

• to ensure heat flow from the piston to the cylinder, and
• to prevent oil not needed for lubrication from passing 

from the crankcase into the combustion chamber, and to 
provide a uniform oil film on the cylinder bore surface.

These requirements have to be met with respect to demands such 
as low friction, low wear, emission suppression, good resistance 
against thermo-mechanical fatigue, reliable operation, and cost 
effectiveness in order to achieve high power efficiency and 
a long operational life.

The largest portion of the engine’s mechanical losses can be 
linked to the piston assembly due to the friction forces between 
the piston/cylinder liner and the piston ring pack/cylinder liner as 
demonstrated in Figure 1. The primary benefit of friction reduction 
is obvious – less fuel consumption and hence a reduction in CO2 
emissions.

2. TIMOSHENKO BEAM THEORY
Some features of modern engineering mechanics are based on the 
Stephen Timoshenko theory, which has the following limitations:

• a beam is defined by the neutral axis and cross section,
• the neutral axis is a continuous function in both the 

undeformed and the deformed state,
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SHRNUTÍ
Pokročilé výpočtové modely pístní skupiny na základě virtuálních prototypů vyžadují mimo jiné i detailní popis dynamického chování 
pístního kroužku. Z tohoto hlediska je zřejmé, že pístní kroužky pracují v podmínkách, které obecně nelze zjednodušit na často 
využívaný osově symetrický model. Píst a vložka válce nemají dokonale kruhový tvar především v důsledku výrobních tolerancí 
a vnějšího tepelně-mechanického zatížení. V případech, kdy kroužek nedokáže kopírovat deformace vložky, nastane lokální ztráta 
kontaktu a následně i zvýšený profuk spalin a spotřeba oleje. V současné době využívané výpočtové modely nejsou schopné zahrnout 
všechny podstatné efekty. Článek se zaměřuje na tvorbu 3D poddajného modelu pístního kroužku s využitím Timoshenkovy teorie 
prutů a Multibody systému (MBS). Vytvořený výpočetní model je porovnán s numerickým řešením na základě metody konečných 
prvků (FEM).
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ABSTRACT
Advanced computational models of a piston assembly based on the level of virtual prototypes require a detailed description of piston 
ring behaviour. Considering these requirements, the piston rings operate in regimes that cannot, in general, be simplified into an 
axisymmetric model. The piston and the cylinder liner do not have a perfect round shape, mainly due to machining tolerances and 
external thermo-mechanical loads. If the ring cannot follow the liner deformations, a local loss of contact occurs resulting in blow-by 
and increased consumption of lubricant oil in the engine. Current computational models are unable to implement such effects. The 
paper focuses on the development of a flexible 3D piston ring model based on the Timoshenko beam theory using the multibody 
system (MBS). The MBS model is compared to the finite element method (FEM) solution. 
KEYWORDS: PISTON RING, TIMOSHENKO BEAM THEORY, MECHANICAL LOSSES, MULTIBODY SYSTEM

COMPUTATIONAL MODELLING OF PISTON RING 
DYNAMICS IN 3D



Computational Modelling of Piston Ring Dynamics in 3D
JozEf DLUGoš, PAVEL NoVoTNý MECCA   03 2014   PAGE 02

• the cross section is planar before and after loading – 
no warping or out-of-plane distortion occurs. Warping 
greatly complicates the behaviour of the beam,

• all loads act through the centroid of the cross-sectional 
area,

• an assumption of small deflections,
• the beam is perfectly elastic – it recovers its original 

shape completely after unloading.
Figure 2 presents a beam model, where a, b and c are angles of 
rotation while u, v and w are deflections. 

The Timoshenko beam theory does not neglect shear deformation 
effects for bending of beams, i.e. sections that are originally 
perpendicular to the neutral axis may not be perpendicular to the 
neutral axis after the deformation. This effect is most significant 
in the case of stocky beams. The relationship between the load 
and the deformation, according to the Timoshenko beam theory, 
is defined as

2 
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where the square matrix represents the universal beam stiffness matrix. In this matrix Ip is the polar 
moment of inertia. Parameter Py is defined to give relative importance of the shear deformations to the 
bending deformations in the y direction as 

,
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where E is the modulus of elasticity, Iz (Iy) is the cross section moment of inertia in the z (y) direction, 
fs,y is the form factor for shear in the y direction, G is the shear modulus, A is the cross-sectional area 
and l is the length of the beam. Form factor values for typical cross sections may be found in [2]. 
Parameter Pz is defined analogically. It is evident that with the increasing beam length the parameters 
Py and Pz reach zero, so the effect of the shear deflection due to shear force can be neglected. A more 
detailed derivation is available in [3]. 
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FIGURE 1: Mechanical loss contribution in a 4.2L diesel engine [1]
OBRÁZEK 1: Podíl mechanických ztrát 4.2L naftového motoru [1]

FIGURE 2: Beam model
OBRÁZEK 2: Model prutu
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where E is the modulus of elasticity, Iz (Iy) is the cross section 
moment of inertia in the z (y) direction, fs,y is the form factor for 
shear in the y direction, G is the shear modulus, A is the cross-
sectional area and l is the length of the beam. Form factor values 
for typical cross sections may be found in [2]. Parameter Pz is 
defined analogically. It is evident that with the increasing beam 
length the parameters Py and Pz reach zero, so the effect of the 
shear deflection due to shear force can be neglected. A more 
detailed derivation is available in [3].

FIGURE 3: Discretized piston ring model
OBRÁZEK 3: Diskretizovaný model pístního kroužku

FIGURE 5: ADAMS and ANSYS natural frequency comparison
OBRÁZEK 5: Porovnání vlastních frekvencí s využitím software ADAMS a ANSYS

FIGURE 4: Piston ring first mode shape at eigen frequency 126 Hz 
estimated by FEA
OBRÁZEK 4: První vlastní tvar kmitu pístního kroužku při vlastní frekvenci 
126 Hz určený pomocí MKP
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3. PISTON RING DISCRETIZATION 
AND VALIDATION
The piston ring is divided using the MBS software MSC Adams 
into n rigid segments connected to its neighbours by a stiffness 
matrix defined by the square matrix presented in (1). 
Figure 3 illustrates the piston ring discretization (gaps between 
segments are only for better demonstration and do not appear 
in the real model). 
Undamped natural frequency depends on the stiffness and the 
mass properties of the object. Discretizing the piston ring did 
not change its mass (no material removal). Therefore, the natural 
frequency can be used as a parameter suitable for comparing 
the two different stiffness estimation methods while the mass 
characteristics remain the same. The piston ring is also modelled 
in FEM using ANSYS software, and natural frequencies and mode 
shapes are calculated. Figure 4 depicts the total displacement of 
the piston ring first mode shape. 
Results presented in Figure 5 reflect a very good correlation 
between the discretization in MBS and FEM software – all 
natural frequencies below 1100 Hz estimated by MBS have limit 
values equal to the frequencies obtained from FEM. Segment 
count n = 20 is set as the best compromise between the accuracy 
and the computing time, since the differences between MBS and 
FEM results of all 6 natural frequencies are below 5 %.

3.1 CONTACT ANALYSIS
Contact analysis between the piston ring and the cylinder liner is 
conducted in order to discover differences between the contact 

FIGURE 8: Piston ring motion for engine speed of 1000 rpm with inertia only
OBRÁZEK 8: Pohyb pístního kroužku pouze se setrvačností pro otáčky 
motoru 1000 min-1

FIGURE 7: Piston assembly model
OBRÁZEK 7: Model sestavy pístní skupiny

FIGURE 6: Contact pressure distribution on the ring face
OBRÁZEK 6: Rozložení kontaktního tlaku na čele pístního kroužku
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pressure distribution estimated by the FEM and by the MBS 
software. The results are augmented by an analytical solution

2 tFp
dh

=  , (3)

where p is the contact pressure, Ft is the pretension force, d is 
the piston ring nominal diameter and h is the piston ring width. 
Distribution of the contact pressure along the circumference 
of the piston ring face (Figure 6) is very similar i.e. the piston 
ring discretization in MBS (20 rigid segments) is adequate and 
does represent a much larger FEM model adequately. The ring 
gap region (0 deg and 360 deg) is the area most affected by 
the pretension force applied and hence results in the biggest 
difference in comparison with the analytical solution.

4. PISTON RING/CYLINDER LINER MODEL
Figure 7 presents the model used for investigation of piston ring 
behaviour. The cylinder liner is drawn only as a plane for better 
demonstration, but its actual shape is a hollowed cylinder. The 
piston is constrained to move only vertically and the motion is 

FIGURE 9: Piston ring motion for engine speed of 40 rpm with inertia only
OBRÁZEK 9: Pohyb pístního kroužku pouze se setrvačností pro otáčky 
motoru 40 min-1

FIGURE 10: Stuck piston ring for crank angle position 180° and engine speed of 40 rpm
OBRÁZEK 10: Zastavený pístní kroužek pro rozsah natočení kliky 180° a otáčky motoru 40 min-1
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applied as a displacement function of the crank mechanism in 
the piston pin. The pretension force of the piston ring is applied 
on the ring end faces.

4.1 INERTIA ONLY
In this case, no influences (no friction or gas pressure) other than 
the pretension and the inertia forces are considered. Therefore, 
the piston ring should reflect the acceleration – the predicted 
piston ring motion is a slap motion from the bottom to the 
top position in the piston groove. This prediction is fulfilled in 
the case of higher rotary speeds. Calculation of the piston ring 
movement at a rotary speed of 1000 rpm is depicted in Figure 8. 
On the other hand, for the low rotary speeds (e.g. 40 rpm as 
presented in Figure 9) the inertia forces are very low and are not 
able to overcome the influence of the pretension, which causes 
the ring to become stuck in the groove (Figure 10), where it 
remains, only minimally affected by the inertia forces.

4.2 FRICTION ONLY
The friction is specified by the coefficient of friction as a constant 
value of 0.1 [4]. The piston ring motion should reflect the piston 
velocity (unlike the previous model), and this is confirmed by the 
simulation results in Figure 11. 

4.3 FRICTION AND GAS PRESSURE APPLIED
Three gas pressure forces are applied on the piston ring 
surfaces as depicted in Figure 12. The force values are equal to 
the pressure acting on the constant surface – and that is the 
stumbling block of this approach. The piston ring area, affected 
by the gas pressure, varies throughout the engine operation 
cycle and is not constant at all. 
As presented by Isarai et al. [5], during the intake stroke the 
piston ring should be sucked to the top side of the piston groove. 

FIGURE 13: Piston ring motion for engine speed of 1000 rpm with friction forces and gas pressures applied 
OBRÁZEK 13: Pohyb pístního kroužku se zadanými silami třecími a od tlaku spalin pro otáčku motoru 1000 min-1

FIGURE 11: Piston ring motion for engine speed of 1000 rpm with 
friction applied
OBRÁZEK 11: Pohyb pístního kroužku se zadaným třením pro otáčky 
motoru 1000 min-1

FIGURE 12: Applied gas pressure forces
OBRÁZEK 12: Uvažované síly od tlaku spalin
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In this case, results in Figure 13 show that the piston ring is 
unable to move vertically. 
At a higher rotary speed of 6000 rpm, the inertia and friction 
forces after a certain threshold overcome the axial gas pressure 
force and the piston ring moves upwards (Figure 14). This 
happens only at the end of the exhaust and the beginning of the 
intake stroke – the portion of the cycle where the acceleration is 
high and conversely, the gas pressure is low.
To ensure the proper behaviour an iterative gas pressure force 
evaluation, depending on the active area, is mandatory. 

5. CONCLUSION
The piston ring is discretized by rigid segments connected via 
flexible elements which use the Timoshenko beam theory for 
the stiffness matrix estimation. The idea is to keep the piston 
ring model within a single software package to minimize 
possible user errors and the number of licenses needed. In 
addition, the developed method is automated and quick. The 
inputs are the piston ring geometry, material, pretension force 
and segment count. 
The validated 3D flexible piston ring model serves as a basis 
for further very complex piston ring dynamics modelling – on 
each piston ring rigid segment nodes (markers, local coordinate 
systems) are generated and then the equilibrium equations are 
formed and solved. Such approach leads to a model able to 
work with distorted bore shapes with full piston ring geometry 
including the ring gap, with general piston ring deflections and 
motion, or able to include the twist effects of unsymmetrical ring 
cross sections (L-shaped, tapered etc.).
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FIGURE 14: Piston ring motion for engine speed of 6000 rpm with friction forces and gas pressures applied 
OBRÁZEK 14: Pohyb pístního kroužku se zadanými silami třecími a od tlaku spalin pro otáčku motoru 6000 min-1


