
The Prague Bulletin of Mathematical Linguistics
NUMBER 105 APRIL 2016 77–99

A Comparison of Four Character-Level String-to-String Translation
Models for (OCR) Spelling Error Correction

Steffen Egera, Tim vor der Brückb, Alexander Mehlerc

a Ubiquitous Knowledge Processing Lab, Technische Universtität Darmstadt
b CC Distributed Secure Software Systems, Lucerne University of Applied Sciences and Arts

c Text Technology Lab, Goethe University Frankfurt am Main

Abstract
We consider the isolated spelling error correction problem as a specific subproblem of the

more general string-to-string translation problem. In this context, we investigate four general
string-to-string transformation models that have been suggested in recent years and apply them
within the spelling error correction paradigm. In particular, we investigate how a simple ‘k-best
decoding plus dictionary lookup’ strategy performs in this context and find that such an ap-
proach can significantly outdo baselines such as edit distance, weighted edit distance, and the
noisy channel Brill and Moore model to spelling error correction. We also consider elementary
combination techniques for our models such as language model weighted majority voting and
center string combination. Finally, we consider real-world OCR post-correction for a dataset
sampled from medieval Latin texts.

1. Introduction

Spelling error correction is a classical and important natural language processing
(NLP) task, which, due to the large amount of unedited text available online, such as
in tweets, blogs, and emails, has become even more relevant in recent times. More-
over, spelling error correction, in a broader meaning of the term, has also been of
interest in the digital humanities where, for instance, large amounts of OCR (Optical
character recognition) scanned text of historical or contemporary documents must be
post-processed, or, even more generally, normalized (Mitankin et al., 2014; Spring-
mann et al., 2014). In the same digital humanities context, spelling error correction

© 2016 PBML. Distributed under CC BY-NC-ND. Corresponding author:
eger@ukp.informatik.tu-darmstadt.de
Cite as: Steffen Eger, Tim vor der Brück, Alexander Mehler. A Comparison of Four Character-Level String-to-
String Translation Models for (OCR) Spelling Error Correction. The Prague Bulletin of Mathematical Linguistics No.
105, 2016, pp. 77–99. doi: 10.1515/pralin-2016-0004.

http://creativecommons.org/licenses/by-nc-nd/3.0/

PBML 105 APRIL 2016

may be important in correcting errors committed by scribes in reproducing histori-
cal documents (Reynolds and Wilson, 1991). Beyond error correction, one faces wide
ranges of co-existing spelling variants especially in documents of historical languages
(e.g., medieval Latin) that must be normalized/standardized in order to be finally
mapped to their corresponding lemmas.

Approaches to spelling correction (or standardization) are typically distinguished
as to whether they target isolated word-error correction or context-sensitive spelling cor-
rection — sometimes also called real-world spelling error correction — in which errors
may be corrected based on surrounding contextual word information. Many spelling
error correction models have been suggested in the literature, among them, and most
famously, the (generative) noisy channel model (Brill and Moore, 2000), discrimina-
tive models (Okazaki et al., 2008), finite-state techniques, as well as a plethora of local
improvements and refinements for each class of models. In this work, rather than
primarily suggesting new models for spelling error correction, we compare general
string-to-string translation models developed in NLP contexts – typically, however, not
within the area of spelling error correction — and survey methods for combining the
outputs of the systems. The models we investigate have the following characteristics:

• They are character-level, that is, corrections are learned and implemented at the
character-level, ignoring contextual words. Accordingly, in this work, our main
focus is on isolated word-error correction, which may be considered harder than
the context-sensitive spelling correction problem since surrounding contextual
word cues are not available.1 However, our experiments also include a real-
world error correction setting.

• The models we survey are general in that they are not restricted to the spelling
error correction task but can also be applied to many problems which require
string-to-string translations, such as grapheme-to-phoneme conversion, translit-
eration, lemmatization, and others.2 We think that generality and transferability
of a model (in conjunction with accuracy) are central criteria of its quality.

• The models are learned from data, and in particular, are trained on pairs of strings
of the form (x,y) where x is a misspelled word and y a desired correction.

The four approaches we survey are the S string-to-string translation model
(Bisani and Ney, 2008), DTL+ (Jiampojamarn et al., 2010a), the contextual edit
distance model suggested in Cotterell et al. (2014), and a model adaption of Eger (2012)
which we call AST (Align-Segment-Translate). Although the first two models

1Also, one solution for real-world spelling error correction is to generate several candidates from an
isolated spelling error correction model and then select the most likely candidate based on a word-level
language model. In this sense, targeting isolated spelling error correction may be the first, and crucial, step
in real-world spelling error correction.

2The only type of restrictions that our models make are monotonicity between input and output string
characters, but otherwise allow, for instance, for many-to-many character relationships between input and
output strings. This scenario is sometimes also referred to as substring-to-substring translation.

78

Eger, vor der Brück, Mehler String-to-string models for spelling correction (77–99)

(and also the last) have been developed within the field of grapheme-to-phoneme
(G2P) conversion and have been applied to related fields such as transliteration, too,
their potential for the field of spelling error correction has apparently not yet been
examined.3

We examine the suitability of the selected string-to-string translation models re-
garding the task of spelling error correction. To this end, we review the performance
of these models and study the impact of additional resources (such as dictionaries
and language models) on their effectiveness. Further, we investigate how to combine
the output of the systems in order to get a system that performs as least as good as
each of its component models. Note that combining string-valued variables is not a
trivial problem since, for instance, the lengths of the strings predicted by the different
systems may differ.

We show that by using k-best decoding in conjunction with a lexicon (dictionary),
the string-to-string translation models considered here achieve much better results on
the spelling correction task than three baselines, namely, edit distance, weighted edit
distance and the Brill and Moore model. On two different data sets, three of the four
models achieve word accuracy rates which are 5% resp. 25% better than the Brill and
Moore baseline, which itself improves considerably upon edit distance and weighted
edit distance. We also show that combining the models via language model weighted
majority voting leads to yet another significant performance boost.

The article is structured as follows. In Section 2, we survey related work. In Sec-
tion 3, we discuss the four string-to-string translation models and explain our tech-
niques of combining them. Section 4 outlines the datasets used for evaluating these
systems, viz., a Latin OCR dataset and a dataset of spelling errors in English tweets.
Section 5, addresses three questions: (1) what are the accuracies of the four models
on two different spelling correction data sets; (2) how can we improve the systems’
performances by means of k-best output lists, language models and dictionaries; and
(3) how well does the ensemble perform for different combination techniques — we
consider weighted majority voting as well as center string ensembles. In Section 6,
we touch upon the real-world spelling correction task, making use of our results in
Section 5. In Section 7, we conclude.

2. Related Work

Brill and Moore (2000) suggest to solve the spelling error correction problem in the
framework of the noisy channel model via maximizing the product of source model
(language model) and the channel model for correcting a false input. Toutanova and
Moore (2002) refine this model by integration of phonetic information. Cucerzan
and Brill (2004) apply the noisy channel approach repeatedly, with the intent to cor-

3Similar investigations of G2P-inspired models for other tasks have been conducted, e.g., for lemmati-
zation (Nicolai et al., 2015; Eger, 2015a).

79

PBML 105 APRIL 2016

rect more complex errors. More recent approaches to the spelling error correction
problem include Okazaki et al. (2008), who suggest a discriminative model for candi-
date generation in spelling correction and, more generally, string transformation, and
Wang et al. (2014), who propose an efficient log-linear model for correcting spelling er-
rors, which, similar to the Brill and Moore (2000) model, is based on complex substring-
to-substring substitutions. Farra et al. (2014) suggest a context-sensitive character-
level spelling error correction model. Gubanov et al. (2014) improve the Cucerzan
and Brill (2004) model by iterating the application of the basic noisy channel model
for spelling correction in a stochastic manner.

Recently, there has been a surge of interest in solving the spelling error correc-
tion problem via the web (e.g., Whitelaw et al., 2009; Sun et al., 2010) and to correct
query strings for search engines (e.g., Duan and Hsu, 2011, and many others). Fur-
ther approaches to spelling correction include finite state techniques (e.g., Pirinen and
Lindén, 2014) and deep graphical models (e.g., Raaijmakers, 2013). Kukich (1992)
summarizes many of the earlier approaches to spell checking such as based on trie-
based edit distances.

As mentioned, the models for spelling correction surveyed here are closely related
to research on more general string-to-string transformation (translation) problems.
This includes a variety of different models such as Cortes et al. (2005); Dreyer et al.
(2008); Jiampojamarn et al. (2008); Bisani and Ney (2008); Cotterell et al. (2014); Wang
et al. (2014); Sutskever et al. (2014); Novak et al. (2015).

3. Models

3.1. Alignment modeling

Two of the string-to-string translation systems evaluated below, DTL+ and
AST, rely on alignments between input and output sequences (x,y). Since re-
lationships between characters in spelling correction are typically of a complex na-
ture as exemplified in Table 2, we assume that a (monotone) many-to-many alignment
paradigm is the most suitable approach to modeling alignments in this scenario. We
employ the monotone many-to-many aligner described in Jiampojamarn et al. (2007).4
An implementation is available online at https://code.google.com/p/m2m-aligner/.

3.2. DTL+

DTL (Jiampojamarn et al., 2008, 2009) views string-to-string translation as a
source sequence segmentation and subsequent sequence labeling task. The model
extends its predecessor (Jiampojamarn et al., 2007) by folding the segmentation and

4This is an unsupervised many-to-many aligner. While supervised aligners are potentially more ac-
curate (Eger, 2015b), the benefit of improved alignments for subsequent string transduction tasks is often
marginal, particularly when training data is abundant.

80

Eger, vor der Brück, Mehler String-to-string models for spelling correction (77–99)

tagging methods into a joint module. DTL+ (Jiampojamarn et al., 2010a) is a dis-
criminative model for string-to-string translation that integrates joint n-gram features
into DTL. The model has been applied in the context of grapheme-to-phoneme
conversion (Jiampojamarn et al., 2010a) and in related domains such as translitera-
tion (Jiampojamarn et al., 2010b). An online implementation is available at
https://code.google.com/p/directl-p/.

3.3. S

S (Bisani and Ney, 2008) implements a joint n-gram model for string-to-
string translation that, in the translation process from x toy, usesn-gram probabilities
over pairs of substrings of the input and output sequence (‘joint multigrams’). Duan
and Hsu (2011) use a joint-multigram modeling, very much in the spirit of S,
for query-string correction for search engines. A downloadable version of S is
available at http://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html.

3.4. AST

We develop our own model for string-to-string translation that, similarly to D-
TL+, treats string transduction as a sequence segmentation and subsequent se-
quence labeling task. In this approach, at training time, a sequence labeling model
(in our case a discriminative conditional random field) is trained on many-to-many
aligned data. Simultaneously, a sequence labeling module is trained for segmenting
input sequences by ignoring the segmented y sequences in the aligned data, simply
considering the segmented x sequences. We use a binary encoding scheme similarly
as in Bartlett et al. (2008) and Eger (2013) for learning sequence segmentation. At
test time, an input string x is segmented via the segmentation module and then the
sequence labeling model is applied to obtain the output sequence. In contrast to D-
TL+, this approach ignores joint n-gram features and resorts to the pipeline ap-
proach to string-to-string translation. Its benefit is that it may be used in conjunction
with any state-of-the-art sequence labeling system, so it may directly profit from im-
provements in tagging technology. We use CRF++ as a sequence labeler.5 We call
this model AST (Align-Segment-Translate). In Table 1, we illustrate its decoding
phase and show sample aligned training data on which the sequence labeling models
in AST are trained.

3.5. Contextual Edit Distance

Cotterell et al. (2014) design a discriminative string-to-string translation model
wherep(y|x) is modeled via a probabilistic finite state transducer that encodes weight-
ed edit operations transforming an input string x into an output string y (weighted

5Downloadable from https://code.google.com/p/crfpp/.

81

PBML 105 APRIL 2016

li-a-b-i-t-o h-a-b-i-t-o
a-d-j-u-t-o-r-i-u-ni a-d-j-u-t-o-r-i-u-m

p-c-r-c-e-p-i-t p-e-r-c-e-p-i-t

adliuc ⇝ a-d-li-u-c↓ ↓ ↓ ↓ ↓
a-d-h-u-c

Table 1. Latin OCR spelling errors and their corrections. Left: Sample monotone
many-to-many aligned training data, as obtained from the alignment procedure

discussed in text. Alignment of characters indicated by dashes (‘-’)), one alignment per
line. Right: AliSeTra at test time. A new input string, adliuc, is first segmented into

a-d-li-u-c, via a segmentation module trained on the segmented x strings in the training
data. Then a tagging model, trained on the monotone many-to-many aligned pairs of

(x,y) strings, assigns each (multi-)character in the segmentation its label, which can be
a character or a multicharacter. This yields the predicted correction adhuc (‘hitherto’).

edit distance). Moreover, in their design, edit operations may be conditioned upon
input and output context,6 thus leading to a stochastic contextual edit distance model.
An implementation is available from http://hubal.cs.jhu.edu/personal/.7

3.6. Baseline methods

As baseline methods for comparison, we use
• edit distance with the operations of insertion, deletion, and substitution as well

as swapping of adjacent characters. That is, for a falsely spelled input x, this
measure determines the string y in a dictionary whose edit distance to x is low-
est;

• weighted edit distance, in which the weight of edit operations is learned from data
(we use the above named many-to-many aligner with edit operations restricted
appropriately to induce training sets) rather than set exogenously;8

• and the Brill and Moore model (Brill and Moore, 2000), which embeds a substring-
to-substring translation model into a generative noisy channel framework. In
this, the channel probability p(x|y) is determined via (maximizing over) un-
igram models on substring segmentations of the form

∏
i p(xi|yi), whereby

6The context is the preceding and subsequent characters in a string, not, e.g., the preceding words.
7The contextual edit distance model as designed in (Cotterell et al., 2014) is a locally normalized model

suffering from the “label bias” problem and thus, potentially inadequate for our task. Although it has been
primarily designed for incorporation in a Bayesian network over string-valued variables (Cotterell et al.,
2015), we nonetheless include it here for comparison.

8In addition, we weight suggestions ŷ, for an input x, by a unigram word-level language model, which
improves performance, as we found. The language model is trained on the same data sets as the language
model for the Brill and Moore (2000) model; see below.

82

Eger, vor der Brück, Mehler String-to-string models for spelling correction (77–99)

x1 · · · xr and y1 · · ·yr are joint segmentations (i.e., an alignment) of x and y.9
For the Brill and Moore (2000) model, we employ unigram word-level language
models as source models.10

All these baselines are dictionary-based, that is, they retrieve corrections y given in
a predefined dictionary D, which is typically advantageous (see our discussion be-
low), but may lead to errors in case of, e.g., low quality of D. For efficient decoding,
we employ a trie-based search strategy for finding corrections y in all three baseline
methods presented. For edit distance, in case of ties between corrections — distinct
forms y with same edit distance to x — we choose the lexicographically smallest form
as the suggested correction.

For the English spelling error data (see below), we use the freely available (rule-
based) spell checker Hunspell11 as a reference.

3.7. System combination

Since we investigate multiple systems for spelling correction, a natural question
to ask is how the outputs of the different systems can be combined. Clearly, this is
a challenging task, and different approaches, with different levels of sophistication,
have been suggested, both within the domain of machine translation (Rosti et al., 2007)
and the field of string transductions (see, e.g., Cortes et al. (2014) for a survey). In this
work, where the main goal is the comparison of existing approaches, we resort to
simple combination techniques illustrated below. For an input string x — a wrongly
spelled or a wrongly OCR recognized word form — let y1, . . . ,yM denote the M

predictions suggested by M different spelling correction systems. Then, we consider
the following combination techniques:

• Majority voting chooses the most frequently suggested correction y among
y1, . . . ,yM.

• Weighted majority voting: here, each suggested correction yℓ receives a weight
wℓ ∈ R, and the correctiony amongy1, . . . ,yM which maximizes

∑M
ℓ=1 wℓ1yℓ=y

is chosen, where 1a=b = 1 if a = b and 1a=b = 0 otherwise. We consider two
weighting schemes:

– Accuracy weighted majority voting: In this scheme, string yℓ receives weight
wℓ proportional to the accuracy of system ℓ (e.g., as measured on a devel-
opment set).

9In contrast, in S, for example, general n-gram models — rather than unigram models — over
(xi,yi) pairs are used for modeling (joint) probabilities p(x,y), indicating why S should typically
outperform the Brill and Moore (2000) approach.

10For the Latin OCR data, as explicated below, these are trained on the Patrologia Latina (Migne, 1844–
1855), and for the English Twitter data, the language model is based on a Wikipedia dump from 2013-09-04.

11http://hunspell.sf.net.

83

PBML 105 APRIL 2016

– Language model weighted majority voting: In this scheme, suggestion yℓ re-
ceives weight wℓ proportional to the language model likelihood of string
yℓ.

• Center string decoding: We define the center string among y1, . . . ,yM, as the
string y ∈ Y = {y1, . . . ,yM} whose average edit distance to all other strings
in Y is minimized (Gusfield, 1997). A center string can be seen as an (efficient)
approximation to the concept of a consensus string (Gusfield, 1997), which does
not need to be in Y.

Clearly, a drawback of all our suggested combination techniques is that they can only
select strings y that belong to {y1, . . . ,yM}. Hence, if none of the strings y1, . . . ,yM

is the true correction of the wrongly spelled form x, then the system combination
prediction will also be wrong. A strength of our combination techniques is that they
are easily and efficiently implementable and interpretable.

4. Data

We conduct experiments on two data sets. The first is a Latin OCR spelling cor-
rection data set, which we obtained by comparison of an OCR scan of a subpart of
the Patrologia Latina (Migne, 1844–1855) with the original in electronic form. The
second is a data set of spelling errors in tweets,12 which we refer to as Twitter data
set. For the Latin data, we automatically extracted pairs of strings (x,y), where x de-
notes a wrongly recognized/spelled OCR form and y its desired correction, via the
Unix shell command diff, applied to the original text and its OCR scan. This yielded
about 12,000 pairs of (x,y) strings. From this, we excluded all string pairs contain-
ing upper case or non-ASCII characters, as some of our systems could only deal with
lower-case ASCII characters. This resulted in a much smaller (and cleaner) data set
comprising 5, 213 string pairs. For the Twitter data, we took the first 5, 000 word pairs
of the respective data set for testing and training. We removed two word pairs which
contained underscores in the x strings, for the same reason as indicated above.

Table 2 illustrates some of the relationships between characters (or character subse-
quences) in Latin and English strings and their spelling corrections. As is well-known,
in the field of classical spelling correction, as the Twitter dataset represents, errors are
often driven by ‘phonetic similarity’ of characters representing sounds, such as a/e,
u/ou, etc., or keyboard adjacency of the characters in question such as n/m, c/v, etc. In
contrast, OCR spelling errors typically derive from the visual similarity of characters,
such as li/h, n/ra, t/l, i/j, in/m, etc. As Table 2 also illustrates, more complex many-
to-many relationships between characters of (x,y) pairs may not be uncommon; and
they allow for a seemingly plausible interpretation of the processes underlying string
transformations. For example, it seems plausible to assume that an OCR system mis-

12Available from http://luululu.com/tweet/.

84

Eger, vor der Brück, Mehler String-to-string models for spelling correction (77–99)

takes h for li, rather than assuming that, for instance, it confuses h with l and subse-
quently inserts an i.

n → ra pneterea −→ praeterea
li → h adliuc −→ adhuc
i → j iuventam −→ juventam
t → l iltustri −→ illustri

in → m inisero −→ misero
c → e quoquc −→ quoque

mm → m comming −→ coming
n → m victin −→ victim
t → th tink −→ think
u → ou wuld −→ would
a → e emergancy −→ emergency
c → v hace −→ have

Table 2. Sample substring substitution patterns in Latin OCR data (left) and English
Twitter data (right), indicated and in bold. The patterns were found via automatic

alignment of string pairs.

5. Isolated error correction

System parametrizations

We run the four systems of Section 3 using the following parametrizations. For S-
, we train 7 successive models, where parameters are, in each case, optimized
on a heldout 5% development set. For AST, we set the C constant in the CRF++
implementation, which determines over-/underfitting of the model, to the default
value of 1. For k-best decoding, we employ a ‘k1 × k2 strategy’ for AST:13 at test
time, each string is segmented into the k1 most likely segmentations, and then the
sequence labeling model — we take as features all sequence m-grams that fit inside
a window of size 5 centered around the current position in the segmented string —
transduces each of these into the k2 most likely corrected strings. Thus, this yields
k1 × k2 output string suggestions; we multiply the segmentation probabilities with
the transduction probabilities to obtain an overall probability of a corrected string.
Then, we re-sort the obtained corrections and keep the k most likely. For the D-
TL+ model, we choose, as context features, all m-grams inside a window of size
5 around the current position, as in the AST setting; we train a linear chain of
order 1, set the joint multigram switch to 3 and the joint forward multigram switch to
1 (increasing the last three parameters did not seem to lead to better results, but only
to longer runtimes). For C E D, we choose the best-performing
(1, 1, 1) topology from the Cotterell et al. (2014) paper, which considers as context the
previous and next x string characters and the previous y string character (the value of
the backoff parameter is 0.5). In terms of training times on a 2.54 GHz processor, train-

13In all experiments, we set k1 = 5 and k2 = 50.

85

PBML 105 APRIL 2016

ing the first three models ran in several hours, across all folds, while the C
E D model took days to train.

Evaluation setup

For the evaluation of our results, we employ 10-fold repeated random subsampling
validation, in which, for each fold, we randomly split the data sets into training vs.
test sets of size 90% vs. 10% of the whole data. Note that in random subsampling
validation, training (as well as test) sets may overlap, across different folds.

Below, we indicate the performance of each of the four general string-to-string
translation systems outlined in Section 3 in two different settings. In the first setting,
we simply check whether the first-best string ŷ predicted by a system S for an input
string x matches y, the true correction for input string x. This is the typical evalua-
tion scenario, e.g., in grapheme-to-phoneme conversion and related string-to-string
translation fields such as transliteration. In an alternative setting, we let each system
emit its k-best output predictions for an input string x, in decreasing order of (system-
internal) probability, and then choose, as the system’s prediction for x, the first-best
string yj, for j = 1, . . . , k, that occurs in a predefined dictionary D. If no string y1, . . . ,yk

is in D, we choose y1 as the system’s prediction, as in the standard setting. Note that
our first setting is a special case of the second setting in which k = 1.

Consulting a dictionary is done by most approaches to spelling correction. Com-
bining a dictionary with k-best decoding in the manner described is apparently a
plausible solution to integrating a dictionary in the setup of general string-to-string
translation models. Note that our approach allows for predicting output strings that
are not in the dictionary, which may be advantageous in case of low dictionary qual-
ity — but even if the quality of the dictionary is good, desired output strings may be
missing (cf. Table 3).

For Latin, we choose a subset of ColLex.LA (Mehler et al., 2015) as our dictionary
of choice and for English, we use ColLex.EN (vor der Brück et al., 2014).14 Table 3
gives the number of entries in both lexicons as well as OOV numbers.

Number of unique entries OOV rate
Subset of ColLex.LA 4,269,104 57/5213 = 1.09%

ColLex.EN 3,998,576 189/4998 = 3.78%

Table 3. Dictionaries, their sizes, and OOV rates (number of corrections in each data set
not in the dictionary).

14Both dictionaries are available from http://collex.hucompute.org/.

86

Eger, vor der Brück, Mehler String-to-string models for spelling correction (77–99)

In both settings, we use word accuracy (WACC) as a performance measure, de-
fined as the number of correctly translated strings over the total number of translated
strings,

WACC =

∑n
i=1 1ŷi=yi |xi

n
,

where n is the size of the test set and 1ŷi=yi |xi
is one or zero, depending on whether

ŷi = yi or not (we use the | notation to indicate dependence of yi/ŷi on input xi).15

5.1. Individual system results

Tables 4 and 5 list the results for the two data sets when using our above dictionary-
based strategy with 1-best and 80-best decoding. Clearly, 80-best decoding yields
much better results for all of the four methods, where word accuracy increases from
about 16 − 70% on the Latin OCR and 5 − 30% on the Twitter data, relative to 1-best
decoding, across all systems. This confirms that a dictionary may be very helpful in
(OCR) spelling correction and that simple k-best decoding and first-best dictionary
selection can be a good solution for integrating a dictionary into general string-to-
string translation systems. In Figures 1 and 2, we plot each system’s performance as
a function of k in the k-best decoding strategy.

We also note that three of the four systems introduced in Section 3 — namely,
AST, DTL+, S — have a very similar performance across the two data
sets, whereas C E D performs much worse, particularly in 1-best
decoding. We attribute this to the fact that contextual edit distance considers much
less context in our setup than do the other three systems.16 Moreover, it operates on
a single-character, rather than on a substring, or multi-character, level, which further
reduces its contextual awareness.17 However, we see that differences in system per-
formances decrease as k increases. For example, for k = 1, the best system is approx-
imately 60%/57% better than C E D on the Latin OCR/Twitter
data sets — while for k = 80, this reduces to 9%/28%. This indicates that C
E D may enumerate many of the relevant correct strings, for given input
strings x, but has a higher chance of erring in correctly ranking them. We also note
that the Twitter data set is apparently harder than the Latin OCR data set, as all sys-
tems exhibit worse performance on the former data set. This is, among other things,

15When an input x has multiple distinct translations in the test data set — e.g., tis −→ this, is, its — then,
in the evaluation, we randomly choose one of these translations as the true translation. As discussed below,
such cases happen relatively rarely. For example, in the Latin OCR data, 88.5% of all x forms have a unique
correction associated with them, while in the Twitter data, this number is 61.5%.

16Increasing context size is critical, as the program’s runtime is excessive. We did not experiment with
larger context sizes for C E D.

17Finally, contextual edit distance is locally normalized and thus suffers from the label bias problem as
discussed earlier.

87

PBML 105 APRIL 2016

due to the fact that the Twitter data is generally more ambiguous than the Latin data
in that an input string x is potentially related to more candidate alternatives.18

Model 1-best 80-best
AST 74.66± 1.26 87.33± 1.26

DTL+ 75.95± 1.65 88.35± 1.54

S 73.67± 1.85 87.44± 1.90

C E D 47.55± 1.77 81.12± 1.28

Edit distance 45.30± 2.04

Weighted edit distance 73.67± 1.21

Brill and Moore 84.20± 2.23

Table 4. Latin OCR data: Word accuracy in % for the k-best decoding strategy explicated
in the text, and comparison with baseline methods; note, in particular, that we use a

dictionary in conjunction with k-best decoding (1-best decoding is tantamount to ignoring
the dictionary). The baseline methods are dictionary-based by their design, so the
numbers simply indicate their word accuracy for their first-best prediction. In bold:

Statistically indistinguishable best results (paired t-test, 5% level).

Model 1-best 80-best
AST 68.38± 1.52 72.98± 2.01

DTL+ 68.15± 1.56 71.65± 2.12

S 63.01± 1.54 70.46± 1.60

C E D 43.52± 2.28 56.78± 1.86

Edit distance 16.81± 1.78

Weighted edit distance 33.69± 2.11

Brill and Moore 58.08± 3.00

Hunspell 41.42± 1.96

Table 5. Twitter spelling correction data: Word accuracy in % for the k-best decoding
strategy explicated in the text, and comparison with baseline methods.

18In the Latin OCR data, each x is on average associated with 1.0037 distinct y forms, while in the Twitter
data, there are 1.1101 distinct y forms per x form. To illustrate, the possible corrections of ot in the Twitter
data are on, of, it, to, got, or, out; similarly, wat may be corrected by what, was, way, want, at, etc. While in the
evaluation, we remove this uncertainty by randomly assigning one of the strings as the correct output for
a given input, at training time, this may lead to more inconsistency and ambiguity.

88

Eger, vor der Brück, Mehler String-to-string models for spelling correction (77–99)

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y

k = 1, . . . , 80

AST
S

DTL+
C E

0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94

0 10 20 30 40 50 60 70 80
A

cc
ur

ac
y

k = 1, . . . , 80

AST
S

DTL+
M

O

Figure 1. Latin OCR data, word accuracy as a function of k in the k-best decoding
strategy outlined in the text. Left: the four systems introduced in Section 3. Right: Three
of the systems (excluding Contextual Edit Distance, for clarity) plus majority voting and

oracle performance.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y

k = 1, . . . , 80

AST
S

DTL+
C E

0.62
0.64
0.66
0.68
0.7

0.72
0.74
0.76
0.78
0.8

0.82
0.84

0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y

k = 1, . . . , 80

AST
S

DTL+
M

O

Figure 2. Twitter data, word accuracy as a function of k in the k-best decoding strategy
outlined in the text. Left: the four systems introduced in Section 3. Right: Three of the
systems (excluding Contextual Edit Distance, for clarity) plus majority voting and oracle

performance.

Comparing the figures in the graphs and tables, we also see that three of the four
general string-to-string translation systems surveyed perform much better than the
baselines edit distance, weighted edit distance, and the Brill and Moore model. For
instance, on the Latin OCR data, the best system is roughly 5% better than the per-
formance of the Brill and Moore model, which itself is considerably better than edit

89

PBML 105 APRIL 2016

distance or weighted edit distance, while on the Twitter data, this difference amounts
to more than 25%. Oftentimes, the three of the four general string-to-string translation
systems also perform on a level close to or above the level of the compared baselines,
even without using a dictionary, as the 1-best results indicate.

In Figure 3, we provide another measure of system performance, recall-at-k. Under
this measure, a system is correct for an input x if the true correction y is among the
system’s k-best predictionsy1, . . . ,yk. Clearly, for fixed k, each system’s performance
under this measure must be at least as good as under the previous word accuracy
measure for the k-best decoding strategy. Recall-at-k may be an important indicator
for real-world spell checking, which often relies on a candidate generation module
and a ranker for the candidates. Then, it may be sufficient for the candidate generation
module to generate the true correction, as long as the ranker (often a word leveln-gram
model) can adequately discriminate between alternatives.

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y

k = 1, . . . , 80

AST
S

DTL+
C E

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80

A
cc

ur
ac

y

k = 1, . . . , 80

AST
S

DTL+
C E

H

Figure 3. Recall-at-k as described in the text. Left: Latin OCR data. Right: Twitter data.

As seen in the figure, results are similar as in the previous setting — system per-
formances increase significantly as k increases and system differences decrease in k.
Interestingly, DTL+ appears to perform relatively worse under this measure than
under the word accuracy measure, indicating that it seems to do a relatively better
job in ranking alternatives, compared to the other systems. In contrast, Hunspell and
C E D, for example, which perform badly at predicting the exact
true correction for an input, nonetheless appear relatively more capable of at least
generating the true correction among their predictions. We also conclude that given
that the recall-at-k of some of the systems is above 95% and 90% for the Latin OCR
and Twitter data sets, respectively, while k-best decoding plus dictionary selection
as outlined above yields word accuracy rates of (only) about 88% and 72%, respec-

90

Eger, vor der Brück, Mehler String-to-string models for spelling correction (77–99)

tively, our presented dictionary k-best decoding strategy could in principle be much
improved upon.

5.2. System combination results

In Tables 6 and 7, we show results for the different system combination techniques
outlined in Section 3. For the four systems surveyed in this work, we use the 80-best
dictionary decoding strategy as outlined above as a basis for the system combina-
tion. We see that majority voting, center string combination, and weighted majority
voting can increase performance significantly over the individual system accuracies.
Majority voting gives slightly better results than center string combination. Even in-
cluding weaker systems can be beneficial as the tables show. Typically, best results
are obtained via integration of all systems except for (individually quite poor) stan-
dard edit distance. Compared to the individual systems, majority voting increases
word accuracy by as much as 2% on the Latin OCR data set and as much as 5% on
the Twitter data set; performance increases for center string combination are 1.1% and
3.5%, respectively.

Latin OCR
Models Majority (MV) Center String Acc-MV LM-MV
A+D+S 88.52± 1.47 88.60± 1.50 88.62∗ ± 1.40 90.99± 1.32

+CED 88.93± 1.51 88.89± 1.48 89.12∗ ± 1.45 91.46± 1.16

+BM 89.82± 1.55 89.62± 1.39 89.76∗ ± 1.22 93.13± 0.92

+WE 90.16± 1.22 89.93± 1.36 90.07∗ ± 1.33 93.33± 0.97

+ED 89.74± 1.45 89.33± 1.38 89.80∗ ± 1.30 93.27± 0.90

Table 6. Word accuracies for system combination techniques on Latin OCR data. Systems
abbreviated by their first letters or initials (WE is weighted edit distance, ED is standard
edit distance). In each column: statistically indistinguishable best results, paired t-test,
5% level. The results for accuracy-weighted majority voting are starred because we used
the accuracies as obtained on the test data (usually, a development data set would need

to be used for this), so that the results are ‘upward’ biased.

Accuracy-weighted majority voting does not typically result in large improvements
over simple majority voting, if at all. Conversely, when we train a 10-gram character
level language model (for Latin, on the original text from which the spelling correc-
tion (x,y) pairs were obtained; for Twitter, on the remaining roughly 35, 000 y strings
that were not used in training/testing), and perform language model weighted ma-
jority voting, then this significantly increases results, by 3.5% on the Latin OCR data
and 4.6% on the Twitter data, over standard majority voting combination.

91

PBML 105 APRIL 2016

English Twitter
Models Maj. (MV) Center Str. Acc-MV LMTwitter-MV LMEuroparl-MV
A+D+S 74.56± 1.90 75.08± 2.05 74.87∗ ± 2.05 77.80± 1.59 76.34± 1.51

+CED 74.34± 2.24 75.06± 2.13 75.03∗ ± 2.47 78.28± 1.87 75.23± 1.62

+BM 76.09± 2.06 75.23± 2.31 76.09∗ ± 2.38 80.11± 1.93 74.20± 2.14

+WE 76.69± 1.79 75.57± 2.23 76.69∗ ± 2.10 80.58± 1.94 72.49± 1.83

+ED 75.49± 1.89 74.31± 2.02 76.69∗ ± 2.11 80.69± 1.98 72.56± 1.95

Table 7. Word accuracies for system combination techniques on English Twitter data.

Note that a language model may lead to deteriorations in results if being trained
on data very dissimilar to the data on which it is to be applied and when weak systems
are integrated into the majority voting process. For example, when we train a 10-gram
character level language model on the English part of the Europarl corpus (Koehn,
2005), then language model weighted majority voting with 7 systems almost drops
down to the word accuracy level of the single best system in the ensemble.

6. Real-world error correction

Finally, we consider the real-world spelling correction problem in our context, fo-
cusing on the Latin OCR data. To this end, we train two components: a spelling error
correction model as outlined in the previous section and a language model (LM). We
train the two most successful spelling correction systems from our previous setup —
DTL+ and AST — on the previously described Latin OCR data,19 this time
not excluding word pairs containing upper-case or non-ASCII characters (so as to pro-
vide a ‘real-world’ situation). In addition, we train a 5-gram Kneser-Ney word-level
LM via the SRILM toolkit20 (Stolcke, 2002) on the union of the Patrologia Latina and
the Latin Wikipedia data.21 To combine the predictions of the LM and the discrimi-
native string transducers, we opt for a power mean combination. In particular, for a
potentially incorrect form x, we let the respective OCR post-corrector output itsK-best
(here, K = 80) suggestions y1, . . . ,yK. For the LM, we score each of these suggestions
y by querying the LM on the sequence xt−4 · · · xt−1y, where xt−s denotes the s-th
word before word x at position t. Then, we choose the form ŷ as the suggested cor-
rection which maximizes

PM
(

lm-score(xt−4 · · · xt−1ŷ), tm-score(ŷ|x);wLM, 1−wLM, p
)

19We keep 90% for training and 10% for testing.
20http://www.speech.sri.com/projects/srilm/
21Dump from 2015-10-10.

92

Eger, vor der Brück, Mehler String-to-string models for spelling correction (77–99)

where lm-score denotes the LM score and tm-score denotes the score of the respec-
tive OCR transducer model. We normalize the scores such that they sum to 1 for
all suggestions in the candidate list. Finally, PM(x, y;wx, wy, p) is the power mean
(wxx

p + wyy
p)1/p where wx, wy ≥ 0 with wx + wy = 1, and p ∈ R. We consider

here p = 1 (weighted arithmetic mean) and p → 0 (weighted geometric mean); we
refer to the latter case as p = 0, for convenience.

We consider two ‘treatments’, one in which we filter out suggestions ŷ not in the
lexicon, and one in which no such filtering takes place. We consider a form x as poten-
tially incorrect only if x is not in our Latin lexicon. When comparing the post-corrected
text with the original, we face the problem that the two texts are not identical in that
the original, e.g., contains additional text such as insertions introduced by the texts’
editors (‘[0026A]’). Thus, we find it easiest to measure the improvement between the
scanned text version and our post-correction by applying the Unix diff command to
the two files.22

Table 8 shows the results, for different values of wLM and p = 0, 1. We note some
general trends: using geometric averaging is always better than using arithmetic aver-
aging, and using the DTL+ corrector is usually better than using AST, which
is in accordance with the results highlighted in Table 4. Moreover, making the LM
weight too large is typically detrimental; in these experiments, values ≤ 1/2 were
found to be best, indicating that the post-correctors typically perform better than the
LM. Finally, using the lexicon as a filtering device has been beneficial in 8 out of 20
cases, but led to worse results in the remaining cases. A possible explanation is that,
after filtering suggestions by whether they are contained in the lexicon, the candi-
dates’ LM and OCR corrector scores change since we renormalize them. Hence, if
for example the LM has attributed a high score to an incorrect form this score may
become even higher after filtering, thus leading to higher probability of a wrong se-
lection. Finally, we note that the diff measure value between the original text and
its scan is 1794, so our post-correction improves this value by roughly 28% (1294 and
1302 for AST and DTL+, respectively, in the best settings). While this seems
to be a moderate improvement, we note that many wrongly scanned forms are in our
lexicon; in particular, this concerned ligatures such as æ in the scan memoriæ of memo-
riae. Hence, these forms were not corrected at all since our correction addressed only
forms not available in our lexicon.

7. Conclusion

We considered the isolated spelling error correction problem as a specific subprob-
lem of the more general string-to-string translation problem. In this respect, we inves-
tigated four general string-to-string transformation models that have been suggested

22To be precise, our command for comparing the two versions is
diff post-corrected.txt orig.txt -y |grep "|\|<\|>"|wc -l.

93

PBML 105 APRIL 2016

Lexicon OCR corrector 0 1/4 1/2 3/4 1

p = 1 + AST 1389 1376 1366 1439 1504
p = 0 + AST 1389 1361 1356 1401 1504
p = 1 - AST 1451 1390 1339 1407 1475
p = 0 - AST 1451 1316 1294 1357 1475
p = 1 + DTL+ 1343 1336 1330 1406 1466
p = 0 + DTL+ 1343 1325 1330 1344 1466
p = 1 - DTL+ 1417 1343 1356 1412 1449
p = 0 - DTL+ 1417 1314 1302 1315 1449

Table 8. Real-world OCR post-correction results as described in text. Different
parametrizations and LM weights wLM. Lower diff scores are better. In bold: best

results in each row.

in recent years and applied them within the spelling error correction paradigm. More-
over, we investigated how a simple ‘k-best decoding plus dictionary lookup’ strategy
performs in this context. We showed that such an approach can significantly outdo
baselines such as the edit distance, weighted edit distance, and the noisy channel Brill
and Moore model (Brill and Moore, 2000) applied for spelling error correction. In par-
ticular, we saw that in the named dictionary-based modus, (three of) the models sur-
veyed here are much better than the baselines in ranking a set of candidate suggestions
for a falsely spelled input. We have also shown that by combining the four models
surveyed (and the baselines) via simple combination techniques, even better results
can be obtained. Finally, we conducted real-world OCR correction experiments based
on our trained systems and language models. The data and the dictionaries can be
accessed via https://www.hucompute.org/ressourcen/corpora so that our findings
may be used as a starting point for related research.

In future work, we intend to investigate more sophisticated combination tech-
niques for combining outputs of several spell checkers, e.g., on the character-level,
as done in Cortes et al. (2014); Eger (2015d,c); Yao and Kondrak (2015). We also in-
tend to evaluate neural-network based techniques in the present scenario (Sutskever
et al., 2014; Yao and Zweig, 2015). Finally, we plan to substitute the CRF++ tagger
used in AST by a higher-order CRF tagger as described by Müller et al. (2013).

Acknowledgments

We gratefully acknowledge financial support by the BMBF via the research project
CompHistSem (http://comphistsem.org/home.html). We also thank Tim Geelhaar
and Roland Scheel for providing the OCR scan of the subpart of the Patrologia Latina
on which our Latin OCR experiments are based.

94

Eger, vor der Brück, Mehler String-to-string models for spelling correction (77–99)

Bibliography

Bartlett, Susan, Grzegorz Kondrak, and Colin Cherry. Automatic Syllabification with Struc-
tured SVMs for Letter-to-Phoneme Conversion. In McKeown, Kathleen, Johanna D. Moore,
Simone Teufel, James Allan, and Sadaoki Furui, editors, ACL, pages 568–576. The Associ-
ation for Computational Linguistics, 2008. ISBN 978-1-932432-04-6. URL http://dblp.
uni-trier.de/db/conf/acl/acl2008.html#BartlettKC08.

Bisani, Maximilian and Hermann Ney. Joint-sequence models for grapheme-to-phoneme con-
version. Speech Communication, 50(5):434–451, 2008. URL http://dblp.uni-trier.de/db/
journals/speech/speech50.html#BisaniN08.

Brill, Eric and Robert C. Moore. An Improved Error Model for Noisy Channel Spelling Correc-
tion. In Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics
(ACL), ACL ’00, pages 286–293, Stroudsburg, PA, USA, 2000. Association for Computational
Linguistics. doi: 10.3115/1075218.1075255. URL http://dx.doi.org/10.3115/1075218.
1075255.

Cortes, Corinna, Mehryar Mohri, and Jason Weston. A General Regression Technique for
Learning Transductions. In Proceedings of the 22Nd International Conference on Machine Learn-
ing, Proceedings of the International Conference on Machine Learning (ICML), pages 153–
160, New York, NY, USA, 2005. ACM. ISBN 1-59593-180-5. doi: 10.1145/1102351.1102371.
URL http://doi.acm.org/10.1145/1102351.1102371.

Cortes, Corinna, Vitaly Kuznetsov, and Mehryar Mohri. Ensemble Methods for Structured
Prediction. In Proceedings of the 31st International Conference on Machine Learning (ICML),
2014.

Cotterell, Ryan, Nanyun Peng, and Jason Eisner. Stochastic Contextual Edit Distance and
Probabilistic FSTs. In Proceedings of the 52nd Annual Meeting of the Association for Compu-
tational Linguistics (ACL), Baltimore, June 2014. URL http://cs.jhu.edu/~jason/papers/
#cotterell-peng-eisner-2014. 6 pages.

Cotterell, Ryan, Nanyun Peng, and Jason Eisner. Modeling Word Forms Using Latent Under-
lying Morphs and Phonology. Transactions of the Association for Computational Linguistics,
3:433–447, 2015. ISSN 2307-387X. URL https://tacl2013.cs.columbia.edu/ojs/index.
php/tacl/article/view/480.

Cucerzan, S. and E. Brill. Spelling Correction as an Iterative Process that Exploits the Collective
Knowledge of Web Users. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2004.

Dreyer, Markus, Jason Smith, and Jason Eisner. Latent-Variable Modeling of String Trans-
ductions with Finite-State Methods. In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages 1080–1089. ACL, 2008. URL http:
//dblp.uni-trier.de/db/conf/emnlp/emnlp2008.html#DreyerSE08.

Duan, Huizhong and Bo-June (Paul) Hsu. Online Spelling Correction for Query Completion. In
Proceedings of the 20th International Conference on World Wide Web, WWW ’11, pages 117–126,
New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0632-4. doi: 10.1145/1963405.1963425.
URL http://doi.acm.org/10.1145/1963405.1963425.

95

PBML 105 APRIL 2016

Eger, Steffen. S-Restricted Monotone Alignments: Algorithm, Search Space, and Applications.
In Proceedings of the Conference on Computational Linguistics (COLING), pages 781–798, 2012.

Eger, Steffen. Sequence Segmentation by Enumeration: An Exploration. Prague Bull.
Math. Linguistics, 100:113–132, 2013. URL http://dblp.uni-trier.de/db/journals/pbml/
pbml100.html#Eger13.

Eger, Steffen. Designing and comparing G2P-type lemmatizers for a morphology-rich lan-
guage. In Fourth International Workshop on Systems and Frameworks for Computational Mor-
phology, pages 27–40. Springer International Publishing Switzerland, 2015a.

Eger, Steffen. Do we need bigram alignment models? On the effect of alignment quality
on transduction accuracy in G2P. In Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages 1175–1185, Lisbon, Portugal, September
2015b. Association for Computational Linguistics. URL http://aclweb.org/anthology/
D15-1139.

Eger, Steffen. Improving G2P from wiktionary and other (web) resources. In INTERSPEECH
2015, 16th Annual Conference of the International Speech Communication Association, Dresden,
Germany, September 6-10, 2015, pages 3340–3344, 2015c.

Eger, Steffen. Multiple Many-to-Many Sequence Alignment for Combining String-Valued Vari-
ables: A G2P Experiment. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 909–919, Beijing, China, July 2015d. Association for
Computational Linguistics. URL http://www.aclweb.org/anthology/P15-1088.

Farra, Noura, Nadi Tomeh, Alla Rozovskaya, and Nizar Habash. Generalized Character-
Level Spelling Error Correction. In Proceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short Papers), pages 161–167, Baltimore, Mary-
land, June 2014. Association for Computational Linguistics. URL http://www.aclweb.org/
anthology/P/P14/P14-2027.

Gubanov, Sergey, Irina Galinskaya, and Alexey Baytin. Improved Iterative Correction for Dis-
tant Spelling Errors. In Proceedings of the 52nd Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2014, June 22-27, 2014, Baltimore, MD, USA, Volume 2: Short Papers,
pages 168–173, 2014. URL http://aclweb.org/anthology/P/P14/P14-2028.pdf.

Gusfield, Dan. Algorithms on Strings, Trees, and Sequences - Computer Science and Computational
Biology. Cambridge University Press, 1997. ISBN 0-521-58519-8.

Jiampojamarn, Sittichai, Grzegorz Kondrak, and Tarek Sherif. Applying Many-to-Many Align-
ments and Hidden Markov Models to Letter-to-Phoneme Conversion. In Human Language
Technologies 2007: The Conference of the North American Chapter of the Association for Com-
putational Linguistics; Proceedings of the Main Conference, pages 372–379, Rochester, New
York, April 2007. Association for Computational Linguistics. URL http://www.aclweb.
org/anthology/N/N07/N07-1047.

Jiampojamarn, Sittichai, Colin Cherry, and Grzegorz Kondrak. Joint Processing and Discrim-
inative Training for Letter-to-Phoneme Conversion. In Proceedings of ACL-08: HLT, pages
905–913, Columbus, Ohio, June 2008. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/P/P08/P08-1103.

96

Eger, vor der Brück, Mehler String-to-string models for spelling correction (77–99)

Jiampojamarn, Sittichai, Aditya Bhargava, Qing Dou, Kenneth Dwyer, and Grzegorz Kon-
drak. DirecTL: a Language Independent Approach to Transliteration. In Proceedings of
the 2009 Named Entities Workshop: Shared Task on Transliteration (NEWS 2009), pages 28–
31, Suntec, Singapore, August 2009. Association for Computational Linguistics. URL
http://www.aclweb.org/anthology/W/W09/W09-3504.

Jiampojamarn, Sittichai, Colin Cherry, and Grzegorz Kondrak. Integrating Joint n-gram Fea-
tures into a Discriminative Training Framework. In Proceedings of HLT-NAACL, pages 697–
700. The Association for Computational Linguistics, 2010a. ISBN 978-1-932432-65-7. URL
http://dblp.uni-trier.de/db/conf/naacl/naacl2010.html#JiampojamarnCK10.

Jiampojamarn, Sittichai, Kenneth Dwyer, Shane Bergsma, Aditya Bhargava, Qing Dou, Mi-
Young Kim, and Grzegorz Kondrak. Transliteration Generation and Mining with Lim-
ited Training Resources. In Proceedings of the 2010 Named Entities Workshop, pages 39–
47, Uppsala, Sweden, July 2010b. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/W10-2405.

Koehn, Philipp. Europarl: A Parallel Corpus for Statistical Machine Translation. In Confer-
ence Proceedings: the tenth Machine Translation Summit, pages 79–86, Phuket, Thailand, 2005.
AAMT, AAMT. URL http://mt-archive.info/MTS-2005-Koehn.pdf.

Kukich, Karen. Techniques for Automatically Correcting Words in Text. ACM Comput. Surv.,
24(4):377–439, Dec. 1992. ISSN 0360-0300. doi: 10.1145/146370.146380. URL http://doi.
acm.org/10.1145/146370.146380.

Mehler, Alexander, Tim vor der Brück, Rüdiger Gleim, and Tim Geelhaar. Towards a Network
Model of the Coreness of Texts: An Experiment in Classifying Latin Texts using the TTLab
Latin Tagger. In Biemann, Chris and Alexander Mehler, editors, Text Mining: From Ontol-
ogy Learning to Automated Text Processing Applications, Theory and Applications of Natural
Language Processing, pages 87–112. Springer, Berlin/New York, 2015.

Migne, Jacques-Paul, editor. Patrologiae cursus completus: Series latina. 1–221. Chadwyck-Healey,
Cambridge, 1844–1855.

Mitankin, Petar, Stefan Gerdjikov, and Stoyan Mihov. An Approach to Unsupervised Historical
Text Normalisation. In Proceedings of the First International Conference on Digital Access to
Textual Cultural Heritage, Proceedings of DATeCH ’14, pages 29–34, New York, NY, USA,
2014. ACM. ISBN 978-1-4503-2588-2. doi: 10.1145/2595188.2595191. URL http://doi.
acm.org/10.1145/2595188.2595191.

Müller, Thomas, Helmut Schmid, and Hinrich Schütze. Efficient Higher-Order CRFs for Mor-
phological Tagging. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 322–332, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics. URL http://www.aclweb.org/anthology/D13-1032.

Nicolai, Garrett, Colin Cherry, and Grzegorz Kondrak. Inflection Generation as Discriminative
String Transduction. In Proceedings of the 2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pages 922–931,
Denver, Colorado, May–June 2015. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/N15-1093.

97

PBML 105 APRIL 2016

Novak, Josef Robert, Nobuaki Minematsu, and Keikichi Hirose. Phonetisaurus: Exploring
grapheme-to-phoneme conversion with joint n-gram models in the WFST framework. Nat-
ural Language Engineering, 2015.

Okazaki, Naoaki, Yoshimasa Tsuruoka, Sophia Ananiadou, and Jun’ichi Tsujii. A Discrim-
inative Candidate Generator for String Transformations. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP), EMNLP ’08, pages 447–
456, Stroudsburg, PA, USA, 2008. Association for Computational Linguistics. URL http:
//dl.acm.org/citation.cfm?id=1613715.1613772.

Pirinen, Tommi A. and Krister Lindén. State-of-the-Art in Weighted Finite-State Spell-
Checking. In Computational Linguistics and Intelligent Text Processing - 15th International
Conference, CICLing 2014, Kathmandu, Nepal, April 6-12, 2014, Proceedings, Part II, pages
519–532, 2014. doi: 10.1007/978-3-642-54903-8_43. URL http://dx.doi.org/10.1007/
978-3-642-54903-8_43.

Raaijmakers, Stephan. A deep graphical model for spelling correction. In Proceedings BNAIC
2013, 2013.

Reynolds, L. D. and Nigel Wilson. Scribes and scholars. A guide to the transmission of Greek and
Latin literature. Clarendon Press, Oxford, 3. aufl. edition, 1991. ISBN 0-19-872145-5.

Rosti, Antti-Veikko I., Necip Fazil Ayan, Bing Xiang, Spyridon Matsoukas, Richard M. Schwartz,
and Bonnie J. Dorr. Combining Outputs from Multiple Machine Translation Systems. In
Sidner, Candace L., Tanja Schultz, Matthew Stone, and ChengXiang Zhai, editors, Proceed-
ings of HLT-NAACL, pages 228–235. The Association for Computational Linguistics, 2007.
URL http://dblp.uni-trier.de/db/conf/naacl/naacl2007.html#RostiAXMSD07.

Springmann, Uwe, Dietmar Najock, Hermann Morgenroth, Helmut Schmid, Annette
Gotscharek, and Florian Fink. OCR of historical printings of Latin texts: problems,
prospects, progress. In Digital Access to Textual Cultural Heritage 2014, DATeCH 2014, Madrid,
Spain, May 19-20, 2014, pages 71–75, 2014. doi: 10.1145/2595188.2595205.

Stolcke, Andreas. SRILM-an extensible language modeling toolkit. In Proceedings International
Conference on Spoken Language Processing, pages 257–286, November 2002.

Sun, Xu, Jianfeng Gao, Daniel Micol, and Chris Quirk. Learning Phrase-Based Spelling Error
Models from Clickthrough Data. In Hajic, Jan, Sandra Carberry, and Stephen Clark, edi-
tors, Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL),
pages 266–274. The Association for Computational Linguistics, 2010. ISBN 978-1-932432-
67-1. URL http://dblp.uni-trier.de/db/conf/acl/acl2010.html#SunGMQ10.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neural
Networks. In Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 3104–3112, 2014.

Toutanova, Kristina and Robert C. Moore. Pronunciation Modeling for Improved Spelling
Correction. In Proceedings of the Annual Meeting of the Association for Computational Lin-
guistics (ACL), pages 144–151. ACL, 2002. URL http://dblp.uni-trier.de/db/conf/acl/
acl2002.html#ToutanovaM02.

98

Eger, vor der Brück, Mehler String-to-string models for spelling correction (77–99)

vor der Brück, Tim, Alexander Mehler, and Md. Zahurul Islam. ColLex.EN: Automatically
Generating and Evaluating a Full-form Lexicon for English. In Proceedings of LREC 2014,
Reykjavik, Iceland, 2014.

Wang, Ziqi, Gu Xu, Hang Li, and Ming Zhang. A Probabilistic Approach to String Transfor-
mation. IEEE Trans. Knowl. Data Eng., 26(5):1063–1075, 2014. doi: 10.1109/TKDE.2013.11.
URL http://doi.ieeecomputersociety.org/10.1109/TKDE.2013.11.

Whitelaw, Casey, Ben Hutchinson, Grace Y. Chung, and Gerard Ellis. Using the Web for Lan-
guage Independent Spellchecking and Autocorrection. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing: Volume 2 - Volume 2, EMNLP ’09, pages
890–899, Stroudsburg, PA, USA, 2009. Association for Computational Linguistics. ISBN
978-1-932432-62-6. URL http://dl.acm.org/citation.cfm?id=1699571.1699629.

Yao, Kaisheng and Geoffrey Zweig. Sequence-to-Sequence Neural Net Models for Grapheme-
to-Phoneme Conversion. CoRR, abs/1506.00196, 2015.

Yao, Lei and Grzegorz Kondrak. Joint Generation of Transliterations from Multiple Repre-
sentations. In Proceedings of the 2015 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pages 943–952, Den-
ver, Colorado, May–June 2015. Association for Computational Linguistics. URL http:
//www.aclweb.org/anthology/N15-1095.

Address for correspondence:
Steffen Eger
eger@ukp.informatik.tu-darmstadt.de
Technische Universität Darmstadt
Hochschulstraße 10, 64289 Darmstadt, Germany

99

	Introduction
	Related Work
	Models
	Alignment modeling
	DirecTL+
	Sequitur
	AliSeTra
	Contextual Edit Distance
	Baseline methods
	System combination

	Data
	Isolated error correction
	Individual system results
	System combination results

	Real-world error correction
	Conclusion

