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INTRODUCTION

Studies of the properties of granulometric
fractions are very important, because they allow for
a thorough recognition of the influence of the granu-
lometric composition of soils on their physical (Bro-
gowski and Kwasowski 2015; Francaviglia et al. 2016,
Koz³owski and Komisarek 2017b; Malik et al. 2014,
Rafraf et al. 2016), chemical (Czaban et al. 2014,
Rastegari et al. 2016, Skic et al. 2016), and biological
properties (Stemmer et al. 1998), and their effect on
pedogenic processes (Koz³owski and Komisarek
2017a; Musztyfaga and Kaba³a 2015). Of particular
importance are further investigations on the sorption
properties of granulometric fractions with regard to
the recognition of processes of sorption and desorption
of macro- and microelements indispensable for plants,
and of harmful heavy metals (D¹bkowska-Naskrêt et
al. 2016, Roth et al. 2012) and other hazardous
compounds (Korobova et al. 2014). The results of
these studies may be used in effective environmental
protection by restricting the mobility of harmful
elements and substances in the environment and in
consequence preventing their entering in the food
chain. So far, the investigations were focused on the
sorption properties of granulometric fractions (Asadu

et al. 1997, Oko³owicz 1996), their mineral composition
(Morrás 1995, Soares et al. 2005) and processes of
weathering on the surfaces (ultrastructure) of
mineral grains they are composed of (Brogowski and
Kocoñ 1984; Morrás 1995). Polish and international
soil science literature reveals an abundance of results
obtained during studies of the sorption properties
determined in the bulk soil mass as the basic analytical
procedure (Chojnicki 2002, Kalembasa et al. 2011),
whereas there are relatively very few reports on the
sorption capacity of particular granulometric fractions
(Asadu et al. 1997, Oko³owicz 1996). One of the
reasons of such discrepancy is the fact that distingu-
ishing particular granulometric fractions from the soil
solid phase, particularly without the use of centrifu-
ging and peptizers, is a time and labour consuming
procedure.

This study was focused on testing the sorption
properties of particular granulometric fractions,
selected from the genetic horizons of Haplic Cambisol,
an arable soil developed from boulder loams,
representing fertile soils used in agriculture and
making up about 30% of the arable soils in Poland.
More detailed recognition of the sorption properties
of these soils may be used for their more reasonable
agricultural usage (such as mineral fertilization) and
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Abstract: The aim of the paper was to investigate the sorption properties of granulometric fractions separated from the genetic
horizons of arable Haplic Cambisol developed from boulder loams of the Middle-Polish (Riss) Glaciation, Wartanian Stadial (central
Poland). Separation of granulometric fractions was made with application of the Atterberg method without the use of centrifuging
and dispersing agents. The cation exchange capacity average value in cmol(+)kg–1 and % contribution in particular fractions reached:
1–0.1 mm – 2.1 (1.6%), 0.1–0.05 mm – 5.5 (4.0%), 0.05–0.02 mm – 8.5 (6.1%), 0.02–0.01 mm – 13.0 (10.1%), 0.01–0.005 mm –
16.1 (12.8%), 0.005–0.002 mm – 28.6 (20.5%) and fraction <0.002 mm – 48.7 (44.9%). Leaching of the total exchangeable bases
was the largest in the 0.1–0.05 mm fraction and decreased successively with decreasing grain diameter. Sorption properties of the
tested soil determine its high agricultural value and buffer properties. The cation exchange capacity of the recognised granulometric
fractions successively increased with decrease of their diameter while leaching process intensity in individual fractions decreased
gradually as their dimensions decreased. Calcium was the most leached cation, followed by magnesium and sodium, whereas potas-
sium was not leached at all. Significant increase of the cation exchange capacity in fractions from carbonate horizons was mostly
caused by the increased contribution of calcium, which could be released from carbonates during extraction of bases.
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increase of the possibility of accumulation and
immobilization of hazardous elements, chemical
compounds and active pesticide substances (Martins
et al. 2018, Singh et al. 2014).

MATERIALS AND METHODS

According to the FAO-WRB classification (IUSS
Working Group WRB 2015), the studied soil was
determined as Haplic Cambisol (Dystric) developed
from boulder loams of the Middle-Polish (Riss)
Glaciation, Wartanian Stadial. It is located in G¹bin
near P³ock (central Poland: 52°23`43.7"N–
19°45`20.4"E).

Fieldwork comprising measuring and description
of the soil profile, and sample collection from parti-
cular genetic horizons was made in accordance with
the methodology of Jahn et al. (2006). Separation of
granulometric fractions was made with application
of the Atterberg method (USDA SCS 1992) without
using chemical compounds for peptization. Peptization
was carried out using thermal-mechanical methods
by boiling the soil with redistilled water (0.5 h) and
then mixing with a rotary mixer for about 10 min.
Boiling and mixing was performed till the entire
<0.002 mm fraction was separated. Similarly, however
without boiling, the >0.002 mm fraction was
separated, whereas the 1 to 0.1 mm fractions were
sieve-separated after drying. The separated fractions
were dried on evaporating dishes in a water bath and
then dried completely in a dryer at 80–90°C. After
drying and weighing, the percentage content of the
particular fractions in the studied soil was calculated.

The following properties were determined in the
soil: total organic carbon (TOC) using the Tiurin
method, pH in distilled water and 1 M KCl, using the
potentiometer method at a soil:liquid ratio of 1:2.5 (v/v),
and the calcium carbonate equivalent using the volu-
metric method using a Scheibler apparatus (van
Reeuwijk, 1992). The following properties were
determined in the fractions and in the soil: total
potential acidity (H+) using the Kappen method
(extraction using 1 mol⋅dm–3 calcium acetate and
titration using 0.1 mol⋅dm–3 NaOH), total exchange-
able base cations (Ca2+, Mg2+, K+, Na+) using 1 M
ammonium acetate at pH = 7 (in samples with carbo-
nates using 1 M ammonium chloride at pH = 8.2) and
analysed by an atomic absorption spectrometer (Ther-
moelemental SOLAAR M6). The cation exchange
capacity (CEC) and base saturation (BS) were calcu-
lated based on the sum of total exchangeable base
cations (TEB) and potential acidity (H+). For statistical
evaluation of results analysis of regression was
applied.

RESULTS

To the depth of 50 cm the studied soil is sandy
loam passing into clay loam deeper in the soil profile
(Table 1). The surface horizons are dominated by the
fine sand fraction (0.25–0.1 mm), whereas the
deeper horizons are dominated by the clay fraction
(<0.002 mm). Acidic reaction in the surface horizons
changes into neutral in the deepest parts of the soil
profile, similarly as the saturation of the sorption
complex by alkaline cations (BS) which increases
with depth (Table 2). The highest total organic
carbon (TOC) content occurs in the humus horizon
and gradually decreases inwards. The cation exchange
capacity is the lowest in the surface horizons, whereas
it shows the highest values in the deepest part of the
profile containing carbonates and is related to the
granulometric composition of the soil.

Cation exchange capacity depends on the soil
granulometric composition, precisely on the contri-
bution of particular fractions and their mineral com-
position, the content of humus compounds, and iron
and aluminium oxides.

The content of exchangeable calcium increases
with diminishing size of the soil particles from sand
to clay. It is generally sorbed by the clay fraction
<0.002 mm, which averagely binds 55.1% of this
element (Fig. 1) in the range of 27.4 to 78.4% (Table 3).
The particular fractions bind calcium averagely at: 1
to 0.1 mm – 1.4%, 0.1 to 0.02 mm – 9.0% and 0.02 to
0.002 mm – 34.4%. In the soil profile the
relatively large content of exchangeable calcium in
all fractions of the humus horizon is most probably
the effect of bioaccumulation. The lowest content of
exchangeable forms of this element was noted in all
fractions of the cambic horizon (Bw), whereas in
fractions of deeper horizons there is a gradual increase
of this cation with its maximal accumulation in
carbonate horizons lying below the depth of 100 cm.

The content of exchangeable magnesium gradually
increases with decreasing the diameter of granulo-
metric fractions and is much lower than that of
calcium (Table 3). Three sand fractions (1–0.1 mm)
averagely bind only 0.5% of exchangeable magnesium,
whereas the remaining fractions bind exchangeable
magnesium at: 0.1–0.02 mm – 5.2%, 0.02–0.002 mm
– 40.7% and the clay fraction – 53.7%
(Fig. 1). All fractions showed the lowest content of
exchangeable magnesium in the cambic horizon, with
the exception of fraction <0.002 mm in diameter, and
its content in particular fractions increased with
larger depth of the soil profile.

Exchangeable potassium occurs in low amounts
in fractions >0.05 mm, whereas gradual increase of
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its content is observed in <0.05 mm fractions, with a
maximal accumulation in the clay fraction (Table 3,
Fig. 1). The percentage contribution of all granulo-
metric fractions in the binding of this cation is avera-
gely at: 1.0–0.05 mm – 3.4%, 0.05–0.002 mm – 28.4%
and colloidal clay – 68.3%. In the entire profile, all
fractions from the humus horizon contain the largest
amount of exchangeable potassium and its content
decreases with depth, which points to lack of inward
migration of this element.

At the depth of 100–125 cm, all granulometric
fractions, with the exception of the clay fraction, are
enriched in exchangeable sodium (Table 3, Fig. 1).
At the same time, depletion in sodium is observed in
the fractions from the cambic horizon, which points
to leaching of this element, similarly as of calcium
and magnesium.

The content of exchangeable hydrogen increases
in the studied fractions with decreasing fraction size,
but much less variably than in the case of the alkaline
cations (Fig. 1, Table 3). The average contribution of
fraction in its sorption is at: 1–0.02 mm – 9.5%, 0.02–
0.002 mm – 59.8% and for fraction <0.002 mm – 30.6 %.
Notable is the much lower domination of the clay
fraction in the binding of this cation in comparison to
the alkaline cations. The highest contents of exchan-
geable hydrogen occur in all fractions of the surface
humus horizon and decrease with depth. Gradual
decrease of the content of exchangeable hydrogen in
the entire profile, with small exceptions, was observed
only for the 0.02–0.01 and 0.01–0.005 mm fractions,
whereas in the remaining fractions its content decre-
ases to the depth of 75 cm gradually, to decrease
rapidly below this depth.

The value of total exchangeable bases (TEB)
increases successively with decreasing diameter of
the granulometric fractions (Table 4). The average
content of particular fractions in the sorption of
alkaline cations is at: 1–0.05 mm – 4.5%, 0.05–0.002 mm
– 40.5% and <0.002 mm – 55.2%. All fractions in the
sub-surface cambic horizon showed the poorest
possibilities of binding these cations, whereas their
largest amounts occur in the deepest part of the profile,
containing carbonates. Significant enrichment in
exchangeable bases of the fractions from the surface
horizon is caused by the presence of humus, and
mineral and organic soil fertilization. Leaching has
large influence on such distribution of the sorption
properties of exchangeable bases by particular
fractions. Enhancement of the leaching process
significantly decreases with decreasing diameter of
the granulometric fractions, with the exception of the
1–0.1 mm sand fraction (Fig. 2). There is a clear
correlation between the decreasing dimension of the
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<0.1 mm fractions and
the decreasing process of
migration (leaching) of
exchangeable bases from
them (Fig. 3).

Cation exchange
capacity increases with
decrease of dimensions
of the granulometric
fractions (Table 5, Fig. 4
and 5). The average con-
tribution of the granulo-
metric fractions in the
sorption capacity is at:
1–0.02 mm – 11.7% (0.9
to 11.1%), 0.02–0.01 mm
– 10.2% (7.7 to 14.8%),
0.01–0.005 mm – 12.8%
(9.9 to 16.7%), 0.005–
0.002 mm – 20.5%
(19.1% to 24.1%) and
fraction <0.002 mm –
44.8%, varying from
28.8 to 54.4% in the soil
profile. The largest capa-
city is observed for all
fractions from the deepest
part of the profile where
carbonates are present
(<100 cm); it is much
lower in the humus horizon,
and the lowest in fractions
from the middle part of
the profile (between 25
and 100 cm). Such diver-
sified sorption capacity
results from mineral
composition, content of
humus compounds, iron
and aluminium oxides,
and the presence and so-
lubility of carbonates.

Calcium and hydro-
gen have the largest con-
tribution in the exchan-
geable sorption capacity
of all fractions (Fig. 6,
Table 6). In contrast to
the remaining fractions,
the clay fraction is cha-
racterised by the largest
contribution of calcium
and clearly the lowest
contribution of hydrogen T
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noziroH ]mc[htpeD gk)+(lomc 1– ]mm[niretemaidhtiwsnoitcarffo

1.0–1 50.0–1.0 20.0–50.0 10.0–20.0 500.0–10.0 200.0–500.0 200.0<

A 52–0 60.1 64.4 05.8 05.01 10.41 03.32 00.06

wB 05–52 79.0 40.2 50.2 00.6 65.8 00.51 03.14

CwB 57–05 51.1 05.2 05.3 42.6 00.8 05.91 00.04

C 001–57 00.1 67.1 30.3 44.7 00.9 38.41 54.04

kC 521–001 04.1 05.8 58.11 40.32 00.62 05.03 49.35

kC 051–521 81.7 94.31 57.12 02.42 88.03 52.24 24.65

TABLE 5. Cation exchange capacity (CEC) of granulometric fractions

FIGURE 2. Translocation index of total exchangeable bases (TEB) and calcium cations (Ca) in particular granulometric fractions
(translocation index TEB = TEB content in the first Ck horizon / TEB content in the Bw horizon; translocation index Ca = Ca content
in the first Ck horizon /Ca content in the Bw horizon)

FIGURE 3. Relationship between <0.1 mm fractions and translocation of total exchangeable bases
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FIGURE 4. Average cation exchange capacity of particular fractions and their % contribution

FIGURE 5. Percentage contribution of particular fractions in the cation exchange capacity

in the sorption complex. With decrease of fraction di-
mensions, the average contents of magnesium and
potassium + sodium increase, with the exception of
the 1–0.02 mm fraction. With depth, in all granulo-
metric fractions from subsequent horizons and lay-
ers, the content of calcium increased whereas the con-
tent of hydrogen decreased (Table 6). The average
content of particular cations in the fractions is arran-

ged as follows to the depth of 75 cm: H+ > Ca2+ >
Mg2+ > K+ + Na+, and in the deeper part of the profi-
le: Ca2+ > H+ > Mg2+ > Na+ + K+. Such distribution
of exchangeable cations is caused by the influence of
leaching in the studied soil, whose intensity, with
some exceptions, decreases with decrease of fraction
diameter.
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DISCUSSION

Literature data and individual investigations
indicate that the sorption properties of the granulo-
metric fractions depend on their mineral composition
– particularly the presence of clay minerals, humus
compounds, and iron and aluminium oxides (Asadu
et al. 1997, McAleese and Mitchell 1958; Morrás
1995, Soares et al. 2005, Tedrow 1966). A large role
is attributed also to the origin and properties of the
parent rock (mineral composition, susceptibility to
weathering), pedogenic processes and climate
conditions influencing the intensity of weathering
processes. The obtained values of cation exchange
capacity (CEC) in the granulometric fractions and the
regularity of increasing sorption capacity of particular
fractions with decrease of their diameter are similar
to earlier results of studies on fractions selected from
soils developed from sands and loams in Poland (Oko-
³owicz 1996). Similar sorption properties of granu-
lometric fractions were also obtained for soils develo-
ped from limestones of Ireland (McAleese and McCo-
naghy 1957), Germany (Leinweber et al. 1993), USA
(Joffe and Kunin 1943) and Spain (Caravaca et al.
1999). Partly different results, with a much larger
sorption capacity of the silt fraction than in the
studied soil were obtained for some soils of Ireland
(McAleese and Mitchell 1958), Africa (Asadu et al.
1997), Argentina (Morrás 1995) and USA (Tedrow
1966). In turn, studies of Soares et al. (2005) on some
soils of Brasil have indicated a much larger sorption
capacity for both silts and sands.

Rapid increase of exchangeable sorption capacity
was observed in all fractions and soil in the lower
part of the profile with carbonates, which was caused
mainly by the increased content of calcium. It may
be the result of partial extraction of calcium from
carbonates during determination of base cations.
Calcium is easiest removed from active carbonates,
relatively recently leached from the upper parts of
the analysed profile. The phenomenon of very high
exchangeable sorption capacity in soil horizons with
carbonates was also observed in soils of Roztocze
Hills, the Holy Cross Mountains (KuŸnicki 1965,
KuŸnicki et al. 1976), and Lower Silesia (Licznar
1976), and in rendzina soils from different geological
formations (Zagórski 2003) in Poland. Similar results
were obtained in carbonate profiles from Argentina
by Bockheim and Douglass (2006) and from Brazil
by Silva et al. (2017). The phenomenon of very high
exchangeable sorption capacity of fractions in
horizons with carbonates may also result from their
different mineral composition and the presence of
mineral amorphous substances, so far rarely included

in the sorption capacity (alophane, imogolite, ferrihy-
drite).

Leaching, commonly taking place in Polish soils
(Chojnicki 2002, Koz³owski and Komisarek 2017a;
Markiewicz et al. 2017), has large influence on the
diversity of sorption properties of granulometric
fractions. The process concerns leaching of calcium
carbonate, exchangeable cations, clay minerals and
available nutrients (Le and  Marschner 2018) from
surface horizons to deeper horizons. Studies indicate
that leaching of exchangeable calcium and total
exchangeable cations is the highest in the 0.1–0.05 mm
fraction, to decrease successively and statistically
significantly with decrease of fraction diameter, with
the exception of the 1–0.1 mm sand fraction (Fig. 2
and 3). Calcium is most susceptible to leaching,
whereas magnesium and sodium much less; in turn,
potassium was not leached at all. The phenomenon
well explains the high susceptibility of light and
medium soils to leaching, due to their large perme-
ability and high contribution of coarse fractions.

CONCLUSIONS

1. The exchangeable sorption capacity of granulome-
tric fractions successively increased with decrease
of their diameter, and its average values in
cmol(+)kg–1 and percentage contribution for parti-
cular fractions were: 1–0.1 mm – 2.1 (1.6%), 0.1–
0.05 mm – 5.5 (4.0%), 0.05–0.02 mm – 8.5 (6.1%),
0.02–0.01 – 13.0 (10.1%), 0.01–0.005 mm – 16.1
(12,8%), 0.005–0.002 mm – 28.6 (20.5%), and
fraction <0.002 mm – 48.7 (44.9%).

2. The dominating cations in the sorption complex
of particular granulometric fractions were calcium
and exchangeable hydrogen, and leaching caused
that the contribution of cations in particular
fractions was arranged as: H+ > Ca2+ > Mg2+ > K+

+ Na+ in the upper part of the profile, and as: Ca2+

> H+ > Mg2+ > Na+ + K+ in the deeper part of the
profile.

3. Leaching of base exchangeable cations was the
largest in the 0.1–0.05 mm fraction and successi-
vely decreased with decrease of fraction diameter,
whereas the sand fraction 1–0.1 mm had a low
susceptibility to this process. Calcium was most
leached, magnesium and sodium – much less,
whereas potassium did not undergo this process.

4. Rapid increase of the exchangeable sorption capa-
city in fractions from carbonate horizons was
caused by increase of the content of calcium
cations, which could be released from the carbo-
nates during extraction of base cations.
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W³aœciwoœci sorpcyjne frakcji granulometrycznych
w glebie brunatnej wy³ugowanej wytworzonej z gliny zwa³owej

Streszczenie: Celem pracy by³o zbadanie w³aœciwoœci sorpcyjnych frakcji granulometrycznych, wydzielonych z poziomów
genetycznych uprawnej gleby brunatnej wy³ugowanej, wytworzonej z gliny zwa³owej zlodowacenia œrodkowopolskiego stadia³u
Warty. Wydzielenie frakcji przeprowadzono metod¹ Atterberga bez wirowania i stosowania peptyzatorów. Wymienna pojemnoœæ
sorpcyjna frakcji granulometrycznych zwiêksza³a siê wraz ze zmniejszaniem siê ich œrednicy, a œrednia jej wartoœæ w cmol(+) kg–1

i udzia³ w poszczególnych frakcjach wynosi³a: 1–0,1 mm – 2,1 (1,6%), 0,1–0,05 mm – 5,5 (4,0%), 0,05–0,02 mm – 8,5 (6,1%),
0,02–0,01–13,0 (10.1%), 0,01–0,005 mm – 16,1 (12,8%), 0,005–0,002 mm – 28,6 (20,5%) oraz frakcji <0,002 mm – 48,7 (44,9%).
Proces wymywania zasadowych kationów wymiennych by³ najwiêkszy we frakcji 0,1–0,05 mm i sukcesywnie zmniejsza³ siê wraz ze
zmniejszaniem siê œrednicy frakcji. Najbardziej ³ugowaniu ulega³ wapñ, znacznie mniej magnez i sód, a potas nie podlega³ temu
procesowi. Znaczne zwiêkszenie wymiennej pojemnoœci sorpcyjnej we frakcjach z poziomów wêglanowych by³o spowodowane
przede wszystkim zwiêkszeniem zawartoœci kationu wapnia, który móg³ byæ uwalniany z wêglanów przy ekstrakcji kationów zasado-
wych.

S³owa kluczowe: frakcje granulometryczne, wymienna pojemnoœæ sorpcyjna, ³ugowanie
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