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Review of  Methods for the Evaluation
of  Human Body Balance
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The aim of  this review paper is to thoroughly present all main tests 
used today in the field of  body balance/equilibrium assessment 

and evaluation. After the introduction of  some basic biomechanical and 
movement regulation concepts, a short revision of  the metric characteristics 
that each test should contain is discussed. The latter encompasses validity, 
objectivity, repeatability, sensitivity, and some other elements that are of  
crucial importance for the practical use of  every assessment. The major 
part of  text is dedicated to the critical research based review of  the body 
balance tests of  different levels of  technical and other complexity. Pros and 
cons of  the presented assessment methods are discussed. First, the field 
motor tests and simple clinical tests are presented. Their primary use in 
school physical education, sports medicine, and rehabilitation is pointed out. 
Second, laboratory tests for the static balance assessment are described in 
details, including all the measured parameters, their informational value and 
limitations. And third, laboratory tests for the evaluation of  dynamic balance 
are presented in an analogue way. In the discussion, we compare different 
tests through the scope of  usefulness, economy, metric characteristics and 
informational value. The paper closes with a summary of  the state-of-the-art 
on the field of  balance and proposals for future research work. 

Keywords: human body balance, static balance, dynamic balance, 
body balance tests

The Functional Role of  Balance

Balance is a fundamental ability of  human movement. Maintaining balance 
during anti-gravitational activities as well as proper body posture represent 
a ground-stone for the execution of  other secondary movements. These are 
used to propel ourselves through space or manipulate with the surrounding 
environment (Winter, 1995). Most elaborate example of  importance of  balance, 
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are fragile elderly. Due to different factors, balance is lost, increasing the risk of  
falling (Baczkowicz, Szczegielniak, & Proszkowiec, 2008). Falls represent one 
of  the most serious health problems in elderly populations. Another important 
aspect of  balance in sports is its connection with injury development. Poor 
balance has been shown to be affected by different pathologies and can even be 
their origin (de Noronha, Refshauge, Herbert, Kilbreath, & Hertel, 2006). On 
the other hand superior athletic skill demands good balance as well. For example 
a gymnast during a routine on a balance beam relies on good balance to perform 
different acrobatic elements.

A lot of  attention has been devoted to the understanding of  balance 
(Benvenuti, 2001; Winter, 1995; Winter, Patla, Ishac, & Gage, 2003). Mechanically 
it can be defined as the ability to sustain center of  body mass in limits of  the 
support surface (Sarabon, Rosker, Loefler, & Kern, 2010). Once an athlete is not 
able to meet these demands she starts to fall. Support surface can be defined by 
the area between the feet or with the area of  the ground on which an athlete 
stands. For example support surface size can be decreased by positioning once 
feed narrower as well as by standing on a narrow rope in a circus.  

Our bodies maintain balance using different strategies. Two most general 
are hip and ankle strategy (Winter, Patla, Ishac, & Gielo-Perczak, 1998; Winter, 
1995). First is used by our bodies when the support surface translates, or when 
the perturbation to balance is bigger. The second strategy is usually used to 
compensate rotational or smaller perturbations. Strict differentiation between 
these two can be drawn only in simpler movements. As the intensity of  balancing 
increases, they seem to work in synchrony, compensating for various types of  
perturbations or enabling execution of  more demanding skills (Bardy, Oullier, 
Bootsma, & Stofrregen, 2002). 

Equipped with the knowledge of  mechanisms used to maintain balance, 
specific prevention and rehabilitation protocols have been devised (Alentorn-
Geli et al., 2009; Hübscher et al., 2010). These usually have a specific focus like 
improving stability of  an ankle joint after injury (Webster & Gribble, 2010) or 
gross body reactions in more functional training (Bean, Vora, & Frontera, 2004). 
Usually this type of  training has been called balance, proprioception of  sensory-
motor training (Lephart, Riemann, & Fu, 2000). 

Two main rationales for better understanding of  balance can be drawn 
from above examples. If  poor balance can be assessed in an uninjured athlete 
appropriate preventive measure can be drawn to prevent injury (Alentorn-Geli 
et al., 2009). Same holds true for elderly people (Karinkanta, Piirtola, Sievänen, 
Uusi-Rasi, & Kannus, 2010). The second rational advises us to assess balance 
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in athletes as poor balance can have a negative effect on specific sports skills 
(Behm & Anderson, 2006; Hellström, 2009).

To be able to quantify balance deficits as well as training improvements 
different balance assessment methods are used in clinical as well as in sports 
practice (Le Clair & Riach, 1996; Tyson & Connell, 2009). These methods use 
different methodology, technology and differ in the level of  balance assessment. 
Basic differences must be considered when coaches, clinicians or therapists de-
cide which of  the methods is most appropriate to apply to their specific demand.

In the following subsections we will first begin with the insight into the 
basic metric characteristics of  the tests. This will be followed by summarizing 
the most frequently used clinical and simple field tests of  balance; laboratory 
tests; and moreover, techniques and parameters used to assess static balance; 
and laboratory tests of  dynamic balance. Basic characteristics of  each test or a 
measured parameter will be described and additionally, strengths and weaknesses 
will be pointed out.

Basic Metric Characteristics of  the Tests

Empirical measurements represent a constituent part of  majority of  the 
sport science studies; body balance and equilibrium research being no exception. 
In longitudinal experiments, at least two consecutive assessments separated 
by short or longer amount of  time are typically carried out (for example pre-
intervention/post-intervention). When body balance is the primary focus of  the 
study, very often, more than one type of  balance test is performed. In order to 
provide good sports, prevention and rehabilitation relevant results and conclusions 
only those tests characterized by the best possible metric characteristics should 
be included in a study. Each test has its own internal characteristics which can 
be evaluated by the analyses of  objectivity, reliability, validity, and sensitivity. In 
order to have the optimal balance test all four basic characteristics should be as 
high as possible. On the other hand, there are minimal standards which need to 
be met if  we want to pronounce the test useful at all.

Objectivity is understood as universal agreement; hence, two or more 
examiners should get the same results when testing the same subject with the 
same test protocol and with the same equipment. Thus, if  it is possible, the 
results should be obtained with appropriate measurement equipment and not as 
a subjective score by an examiner (human evaluation is always subjective). For 
many reasons this is sometimes not possible. In such cases, the examiner should 
be properly trained for performing balance measurements.
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Secondly reliability represents the variation of  measures obtained by 
a balance measuring protocol. This characteristic has also been known as 
consistency. Different types of  reliability are known: inter-rater or inter-observer 
reliability, test-retest reliability, parallel-forms reliability and internal consistency 
reliability. First, inter-rater reliability is used to assess the degree to which 
different raters/examiners give consistent estimates of  the same phenomenon. 
In clinical practice balance testing is usually performed by various examiners, 
making it important to be aware of  possible error resulting from poor inter-
rater reliability. Second, test-retest reliability is used to assess the consistency 
of  a measure from one time to another. This is simply the reliability between 
two or more trials performed by the same examiner on the same subject. This 
type of  reliability is most frequently examined in evaluation of  body balance, 
equilibrium and posture assessment methods. Third, parallel-forms reliability 
is used to assess the consistency of  the results of  two tests constructed in the 
same way from the same content domain. It could be used to select the best test 
among the selected tests for the same, i.e. presumably alike, functional ability. 
This, however, does not necessarily mean that this test is the best for the specific 
problem. Other test characteristics should be considered as well. Fourth, internal 
consistency reliability is used to assess the consistency of  results across subjects 
within the test. It could be used to test reliability of  specific measure of  the test 
across group of  subjects. The most commonly used coefficients of  reliability are 
intra-class correlation coefficient (ICC) and coefficient of  variation (CV).

An important category is validity of  a test. It can be describe as tests 
relevance, or the degree to which the tool measures what it claims to measure. It 
can be evaluated by comparing the results obtained by a tested test with a gold 
standard test (well established test) for a specific problem. Validity is expressed 
as correlation coefficients between the two. If  the balance test is not valid it 
cannot be used in balance and equilibrium assessment.

And finally, sensitivity is a factor that is able to detect small, but important, 
changes in performance of  a subject. Difference between finishing as first 
or second can be very small in a sport event like sprint. For example balance 
tests should be sensitive to small changes in balance tasks used, like different 
feet positions. By these means important differences in function of  balance 
mechanisms can be evaluated (Sarabon et al., 2010). Therefore, it is important to 
be able to detect small changes in a performance. Because every measurement 
is affected by a noise (e.g. signals), we should be very careful – we need to 
know whether small changes are really changes in performance or just a result 
of  a noise. A quantitative value of  sensitivity may be obtained by comparing 
results of  the measurement-to-noise ratio, where the results are the percentage 
improvement in performance and the noise is the CV.
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To sum-up, when considering which balance testing protocol to apply to 
sports practice, measurement equipment, and assessment procedure in general, 
should provide the test with good objectivity, reliability and sensitivity. It should 
precisely measure the balance task, performance or characteristic specific for a 
certain sub-type of  balance.

Clinical and Simple Field Tests of  Balance

Clinical and simple filed tests of  human balance (Pérennou et al., 2005; 
Yelnik & Bonan, 2008) are tests that require none or little equipment, are very 
cheap and can be performed quickly (Figure 1). They consist of  a different number 
of  tasks that are evaluated either using a score on a predefined qualitative scale, 
counting balance loses or simple time measurements. The tests are performed 
on a subject whose quality of  executing different tasks is evaluated by an expert. 
These assessment procedures are based on standardized test protocols; however, 
they remain to be influenced by a human factor (subjectivity) since they are 
based on the observational criteria of  the examiner. The more difficult tests 
(Flamingo test, sharpened Romberg test, etc.) are also used in sports testing 
and screening protocols, while the less demanding ones have been frequently 
reported in the studies focusing on elderly adult population who are at risk for 
falls. Several clinical tests have been developed over the years and some of  the 
most frequently used among them are described in the following paragraphs.

Figure 1. Example of  clinical test - Flamingo test 
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Romberg test (Findlay, Balain, Trivedi, & Jaffray, 2009; Lê & Kapoula, 2008; 
Longridge & Mallinson, 2010; Ma et al., 2009; Mourey, Camus, & Pfitzenmeyer, 
2000) is a commonly performed balance test which was first described by Moritz 
Heinrich von Romberg in the early 19th century. The exam is based on the 
premise that a person requires at least two of  the three underlying body senses, 
which are crucial for the maintaining of  equilibrium while standing, namely pro-
prioception (the ability to know one’s body in space), exteroception (the ability 
to feel touch or pressure) and vision (which can be used to monitor changes 
in balance). A subject who has a problem with proprioception can still main-
tain balance by using exteroceptive sensation and vision. The Romberg test is a 
test of  the body’s sense of  positioning (proprioception), which requires healthy 
functioning of  the dorsal columns of  the spinal cord (Khasnis & Gokula, 2003). 
Besides balance testing, it is also used as an indicator for possible alcohol or drug 
impaired driving and neurological decompression sickness. To perform the test, 
the subject is asked to stand erect with feet together and eyes closed. It is rec-
ommended that examiner or assistant stand close to the subject as a precaution 
in order to stop him from falling over and hurting himself/herself. Watch the 
movement of  the body in relation to a perpendicular object behind the subject 
(corner of  the room, door, window, etc.). A positive sign is noted when a sway-
ing, sometimes irregular swaying and even toppling over occurs. The essential 
feature is that the subject becomes more unsteady with eyes closed. First, the 
subject stands with feet together, eyes open and hands by the sides. Than the 
subject closes the eyes while the examiner observes for a full minute. Romberg’s 
test is positive if  the subject sways or falls while the subject’s eyes are closed 
(Lanska & Goetz, 2000). Subjects with a positive result are said to demonstrate 
Romberg’s sign or Rombergism. They can also be described as Romberg’s posi-
tive. The basis of  this test is that balance comes from the combination of  several 
neurological systems, namely proprioception, vestibular input and vision. If  any 
two of  these systems are working, the subject should be able to demonstrate a 
fair degree of  balance. The key to the test is that vision is taken away by asking 
the subject to close their eyes. This leaves only two of  the three systems re-
maining and if  there is a vestibular disorder (labyrinthine) or a sensory disorder 
(proprioceptive dysfunction), the subject will become much more imbalanced.

Sharpened Romberg test (Sofianidis, Hatzitaki, Douka, & Grouios, 2009), 
also known as the tandem stance test (Fitzgerald, 1996) was developed on the 
basis of  Romberg test. In this case, a subject is asked to stand heel-to-toe (tandem 
position) with their arms crossed so that the open palm falls across the opposite 
shoulder. The subject closes his eyes once he is stable. He tries to maintain this 
position for a full minute. Evaluation is the same as with Romberg test. Under 
sharpened Romberg test also other stands (semi tandem, contra tandem, one leg 
(Figure 2)) and/or additional equipment (unstable surface such as Airex, Thera-
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Band, Gymnic, and some other balance pads) are used to increase difficulty of  
the task. Poor sensitivity of  the sharpened Romberg test was reported by Šarabon 
& Omejec (2007) who carried out a study on 102 healthy young subjects. The 
same study revealed a moderate level of  test-retest repeatability (ICC = 0.49) of  
the Romberg test.

Figure 2. The five different foot positions used in SRT: (a) parallel, (b) semi-
tandem, (c) tandem, (d) contralateral tandem, and (e) single leg. The leg 
dominance is marked by D (dominant leg) and ND (non-dominant leg). 

Tinetti balance test (Kaufman et al., 2006; Kegelmeyer, Kloos, Thomas, 
& Kostyk, 2007; Kloos, Kegelmeyer, Young, & Kostyk, 2010; Köpke & Meyer, 
2006; Muñoz et al., 2010; Rabbitt et al., 2006; Schumacher, Pientka, & Thiem, 
2006; Rodrigues, Cader, Torres, Oliveira, & Dantas, 2010; “Tinetti test assessment 
form,” n.d.) is an easily administered test to measure a subject’s gait and balance 
ability (Figure 1).  The test is used to evaluate subject’s ability to perform specific 
tasks and is primarily used as a predictive measure for falls. Most commonly it 
is used on elderly adult population who are at most risk for falls, and it takes ap-
proximately 10 to 15 minutes to perform and score. The test is performed in two 
parts – a balance and a gait part. The subject is asked to perform very specific 
tasks listed and described on the assessment tool form. The therapist observes 
the completion of  each task and scores the subject on a 0-2 scale based on how 
the task is completed. Score 0 represents the most impairment, while a 2 would 
represent independence of  the subject. At the end of  each part the therapist 
adds up the subjects total score and compares it to the test pre-assessed ranges.  
The total possible score for the balance part is 16 points and the total possible 
score for the gait part is 12 points. Subjects who score a total of  19 points or be-
low are at high risk for falls, while subjects who score between 19 and 24 points 
have a moderate risk for falls and subjects with scores above 24 points are at lim-
ited risk for falls. Tools needed for this assessment include a chair, a stopwatch, 
and a 5-meter walkway. Inter-rater and intra-rater reliability of  the test was per-
formed on individuals with amyotrophic lateral sclerosis (Kloos et al., 2004). 
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High ICC values (> 0.90) were found for the total Tinetti test scores. Inter-
rater reliability between three experts was 88% for individual maneuvers, while 
intra-rater reliability of  93% was observed for 6 experts. The results suggest 
that Tinetti test is reliable for examination of  this specific group of  individuals.

The Berg balance scale (BBS) or Berg balance test (Beauchamp, O’Hoski, 
Goldstein, & Brooks, 2010; “Berg balance scale assessment form,” n.d.; Berg, 
Wood-Dauphinee, Williams, & Maki, 1992; Blum & Korner-Bitensky, 2008; 
Greene et al., 2010; Ortuño-Cortés, Martín-Sanz, & Barona-de Guzmán, 
2008) was developed to measure balance among older people with impairment 
in balance function by assessing the performance of  functional tasks. It is a 
valid instrument used for evaluation of  the effectiveness of  interventions and 
for quantitative descriptions of  function in clinical practice and research. The 
BBS consists of  14 tests (each has a five-point scale 0-4) designed to measure 
balance of  the older adult in a clinical setting. Equipment needed includes a 
ruler, two standard chairs (one with arm rests, one without), a footstool or step, 
a stopwatch or wristwatch, and a 5-meter walkway. It takes 15 to 20 minutes to 
perform test on one subject. Subjects who achieved 0-20, 21-40 and 41-56 are at 
high, medium and low risk of  falling, respectively. The BBS has been evaluated 
in several reliability studies. A recent study of  the BBS indicates that a change 
of  8 BBS points is required to reveal a genuine change in function between 
two assessments among older people. Bogle Thorbahn and Newton (1996) 
conducted a study on elderly people in which they wanted to determine whether 
the Berg balance test could be used to predict an elderly person’s risk of  falling. 
Although the Berg balance test demonstrated only 53% sensitivity, the results 
support the test developers’ use of  45 (out of  56) as a generalized cutoff  score. 
Older adults who scored higher than the cutoff  score on the test were less likely 
to fall than were those adults who scored below the cutoff  score. Decreased 
scores, however, did not predict increased frequency of  falls. Study with the aim 
to determine test-retest reliability and minimal detectable change for the BBS, 
the Romberg Test (RT), and the Sharpened Romberg Test (SRT) with eyes open 
and closed was carried out on elderly people with Parkinsonism. The ICCs for 
test-retest reliability were above 0.90 for the BBS and SRT with eyes closed. The 
minimal detectable change values (calculated using a 95% confidence interval) 
were 5/56 for BBS and 19 seconds for SRT with eyes closed. Minimal detectable 
change values are useful to therapists in rehabilitation and wellness programs in 
determining whether change during or after intervention is clinically significant. 
High test-retest reliability of  the scores for the BBS and SRT with eyes closed 
makes them trustworthy functional assessments in people with pathological 
conditions involving severe balance impairments (Parkinsonism, etc.).
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The Flamingo balance test (Jakobsen, Sundstrup, Krustrup, & Aagaard, 
2010; Sundstrup et al., 2010; Tsigilis, Douda, & Tokmakidis, 2002; Tsigilis & 
Theodosiou, 2008) achieves the requirements of  simplicity, low cost, and it is 
proper for mass investigations. It is used to assess the ability to balance success-
fully on a single leg. This test is more difficult than the ones described above and 
it is most commonly used as field motor test of  balance on healthy subjects or 
athletes. Only a stopwatch and a narrow beam (5 cm) with non-slip surface are 
necessary to perform the test. Sometimes the test is performed on a wide sur-
face and not on the beam. In this test the subject is standing on a beam on his 
preferred foot, bends his free leg backwards and grips the back of  the foot with 
the hand on the same side, standing like a flamingo. The procedure is as follows: 
start the stopwatch when subject is in described pose, stop the stopwatch each 
time the subject loses balance (let go of  the foot being held), start timing again 
until he loses balance and counting the number of  falls in 60 seconds of  balanc-
ing. If  there are more than 15 falls in the first 30 seconds, the test is terminated 
and a score of  zero is given. Poor sensitivity of  the test was reported in a study 
on young healthy people, due to a large number of  subjects achieving the best 
results possible (Sarabon & Omejec, 2007). Also moderate repeatability (ICC 
= 0.61) was observed in the same study. Stabilometry of  the flamingo test was 
assessed in the study performed by Barabas, Bretz and Kaske (1996). They con-
clude that stabilometry in Flamingo test position differentiates better the ath-
letes with high level of  the balance capabilities than the traditional Romberg test.

In the section about clinical and simple filed tests of  human balance, few 
studies about prediction of  person’s risk of  falling were pointed out. During the 
last two decades the sport science research devoted a great attention to the studies 
of  elderly population and their related health and prevention issues. Among 
those, falls and related injuries are in the center of  research devotions (Avdić & 
Pecar, 2006; Bauer, Rietsch, Gröger, & Gassmann, 2009; Giansanti, Maccioni, 
Cesinaro, Benvenuti, & Macellari, 2008; Huang & Wang, 2009; McMichael, 
Vander Bilt, Lavery, Rodriguez, & Ganguli, 2008; Michel-Pellegrino, Hewson, 
Drieux, & Duchêne, 2007; Schwesig, Kluttig, Kriebel, Becker, & Leuchte, 2009).

Laboratory Tests of  Static Balance

Static balance of  the human body is the ability to maintain specific posture. 
It is usually obtained in a standing subject with devices that measure the 
movements of  the body or its center of  gravity, or mostly the center of  pressure 
(COP) (Figure 3). At first mechanical or magnetic recording devices connected 
to the waist (Dornan, Fernie, & Holliday, 1978; Lord, Clark, & Webster, 1991) 
or the hip region (Dean, Griffiths, & Murray, 1986) were used. Today the most 
common device is a force platform (Błaszczyk, 2008; Raymakers, Samson, & 
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Verhaar, 2005) which measures the COP of  the whole human body, rather than 
just a segment, as previously mentioned devices. There are many possibilities of  
quantifying COP path of  body sway. An extensive review of  parameters that 
were used to assess body sway is presented in the rest of  this section.

Figure 3. Example of  static balance test on a force plate (single leg stance, eyes 
closed, arms free). An example of  the COP sway of  this test is on the 
right side. 

Acquisition and signal processing of  the COP sway is an essential part of  a 
test. Usually, manufactures of  a force plate systems offers software for acquisition 
of  the COP, but we should still pay attention to the sampling frequency of  the 
acquisition. If  it is too low, then we might not be able to acquire small and 
high frequency changes of  the COP. The recommended sampling frequency is 
between 100 and 1000 Hz. Higher sampling frequency are not necessary and 
they will only increase the amount of  data acquired. Processing of  acquired 
data consist of  preprocessing and actual processing where final results are 
computed. Preprocessing usually consists of  detection of  outliers and data 
filtering. The latter is especially important when we acquire analog signal (e.g. 
COP components from the force plate). For mechanical signals band pass filters 
with cutoff  frequencies of  0.1 and 15 Hz should be used because human is not 
able to surpass this frequency while moving.

Many different parameters of  COP sway have been proposed over the 
years. In general we can classify them into two main categories; global and 
structural (Baratto, Morasso, Re, & Spada, 2002). Global parameters estimate 
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the overall size of  the COP sway, while structural parameters estimate the 
elements or smaller parts of  the COP sway. Regarding the direction, parameters 
can be calculated as two-directional and/or one-directional, where the anterior-
posterior (AP) and the medio-lateral (ML) are the two possible directions. The 
whole set of  parameters known from literature is listed and described in a table 
that includes name, symbol, unit, directions and description of  the parameter.

Table 1. Global parameters of  COP sway

Structural parameters are divided on parameters based on the computation 
of  diffusion plots or variograms proposed by Collins et al. (1993, 1995a, 1995b), 
and on parameters based on the analysis of  sway density plots proposed by 
Jacono, Casadio, Morasso and Sanguineti (2004).

Name Symbol Unit Directions Description

Sway path SP mm AP, ML and 
both The length of  the trajectory of  the COP sway.

Sway velocity SV mm/s AP, ML and 
both

The length of  the trajectory of  the COP sway 
divided by the measurement time.

Sway average 
amplitude SAA mm AP and ML The sum of  amplitude divided by

the number of  changes in direction.

Sway maximal 
amplitude SAM mm AP and ML The amplitude between the two most distant 

samples of  COP sway

Sway area SA mm AP and ML
The time integral of  the area swept by the 
COP trajectory with respect to platform 
center..

Sway area per 
second SAa mm2/s AP, ML and 

both

The time integral of  the area swept by the 
COP trajectory with respect to platform 
center, divided by the time of  measurement.

Oscillation 
amplitude OA mm AP and ML

It is estimated by computing the ellipse which 
contains 90% of  the data points of  the COP 
trajectory.

Frequency of  
sway peaks SFP Hz AP and ML The frequency calculated as the number of  

peaks divided by the measurement time.
Mean frequency 

of  sway SFM Hz AP and ML The mean frequency of  amplitude spectrum.

Sway frequency 
band SFB Hz AP and ML The frequency band that contains a fraction 

of  the area under the amplitude spectrum.
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The underlying idea of  the first approach of  the computation based on 
diffusion plots (Baratto et al., 2002) is to model the stabilograms as fractional 
Brownian motions (Mandelbrot & Van Ness, 1968) and thus to decompose the 
sway patterns into two stochastic processes: a short-term process, interpreted 
as an open-loop control mechanism, and a long-term process, interpreted as a 
closed-loop mechanism.

Table 2. Parameters based on diffusion plots.

The underlying idea of  the second approach based on the analysis of  sway 
density plots (Morasso & Schieppati, 1999) is that the feed-forward control is the 
prevalent mechanism in the postural stabilization process, thus breaking down 
the control process into a sequence of  anticipatory motor commands. This idea 
is consistent with the empirical investigation reported by Gatev, Thomas, Kepple 
and Hallett (1999).

Parameters based on density plots:

- Populations mean value of  the peaks in the sway density curve (MP) 
[number] and the corresponding intra-subject variability (SP) [number].

- Populations mean value of  the time interval between successive peaks in 
the sway density curve (MT) [s] and the corresponding intra-subject variability 
(ST) [s].

Name Symbol Unit Directions

Variance Var mm2 MLO, APO and RO

Critical time window CW s MLO, APO and RO
Short-range slope in 

linear scale DS mm2/s MLO, APO and RO

Short-range slope in 
logarithmic scale HS mm2/s MLO, APO and RO

Long-range slope in 
linear scale DL mm2/s MLO, APO and RO

Long-range slope in 
logarithmic scale HL mm2/s MLO, APO and RO
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- Populations mean value of  the distance between successive peaks in the 
sway density curve (MD) [mm] and the corresponding intra-subject variability 
(SD) [mm].

Next, we will present also other techniques for the COP sway analysis that 
transform or decompose COP curve. The output of  these techniques are new 
(one or more) curves and/or new (one or more) parameters.

Rambling (R) and trembling (T). R is the motion of  a moving reference point 
with respect to which the body’s equilibrium is instantly maintained, while T is the 
oscillation of  COP around the reference point trajectory (Zatsiorsky & Duarte, 
1999, 2000). Because rambling and trembling are curve which can be quantified 
with many different techniques (amplitude, frequency, etc.). In young healthy 
people, rambling amplitude was roughly three times larger than trembling am-
plitude, while the frequency was four times smaller (Zatsiorsky & Duarte, 2000).

Sample entropy (SE) (Richman & Moorman, 2000) provides information 
about the regularity or predictability of  a time-series (COP path) and it is used to 
analyze complex stochastic systems. Small values of  SE are associated with great 
regularity (high possibility of  the same data) while large values of  SE reflect great 
irregularity (low possibility of  the same data). SE is mathematically defined as the 
negative natural logarithm of  the conditional probability that a sequence of  data 
points with length N, having repeated itself  within a tolerance t for M points, 
will also repeat itself  for M + 1 points, without allowing self-matches (Richman 
& Moorman, 2000). Related to Borg and Laxaback (2010) further research 
activities are necessary to identify the correct physiological interpretation of  SE. 
SE was used in many studies of  balance where different interpretations of  it may 
be found (Cavanaugh, Mercer, & Stergiou, 2007; Deffeyes et al., 2009; Donker, 
Roerdink, Greven, & Beek, 2007; Duarte & Sternad, 2008; Haran & Keshner, 
2008; Santarcangelo et al., 2009; Schmit, Regis, & Riley, 2005; Stins, Michielsen, 
Roerdink, & Beek, 2009).

Recurrence quantification analysis (RQA) is a nonlinear and multi-
dimensional technique which does not assume data stationary and which 
provides a characterization of  a variety of  features of  a given time series, 
including a quantification of  deterministic structure and of  nonstationarity 
(Riley, Balasubramaniam, & Turvey, 1999). These features make it an ideal 
tool for analysis of  COP data with respect to the above concerns. Detailed 
instructions for implementing RQA are presented in Belaire-Franch, Contreras 
and Tordera-Lledo (2002). Five measures may be obtained by RQA: percent 
recurrence, percent determinism, the ratio of  these quantities, entropy, and 
trend. The measures are explained in details by Webber and Zbilut (1994).
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Detrended fluctuation analysis (DFA) is a technique that characterizes 
the pattern of  variation across multiple scales (fractal-scaling) and is based on 
the assumption that variations due to intrinsic dynamics of  the system exhibit 
long-range correlations If  the outcome parameter α is between 0.5 and 1, this 
indicates the presence of  long-range power-law correlations in the time series. 
This technique was presented and described in details by Peng, Havlin, Stanley 
and Goldberger (1995).

The largest Layapunov exponent (LLE) measures the system’s resistance to 
small internal perturbations, such as the natural sway fluctuations present while 
standing upright. In other words, it detects presence of  chaos in a dynamical 
system. Lyapunov exponents quantify the exponential divergence of  initially 
close state-space trajectories and estimate the amount of  chaos in a system 
(Rosenstein, Collins, De Luca, & Michael, 1993). If  LLE is negative, then any 
perturbation exponentially damps out and initially close trajectories remain 
close. In contrast, for positive LLE, nearby points diverge as time evolves and 
produce instability; that is when the distance between the trajectories increases 
exponentially. LLE was commonly used in recent studies of  COP (Donker et al., 
2007; Kyvelidou, Harbourne, Shostrom, & Stergiou, 2010; Kyvelidou, Harbourne, 
Stuberg, Sun, & Stergiou, 2009; Mizuta, Tokita, Ito, Aoki, & Kuze, 2009).

Reliability of  calculated parameters is important when we try to provide reli-
able conclusions. Because it is hard to form a well-defined sample of  people (one 
would have to include many different people profiles: young, old, healthy, ill, etc.) 
and cover many static balance tests in a single study, we cannot talk about reliabil-
ity of  parameters in general, but we are limited to the sample that was included in 
the study. Some basic metric characteristics of  the test were provided along test 
description in previous paragraphs. However, for some tests we were unable to 
find reports about some characteristics, thus, we believe there is a gap in research 
literature regarding this problem. We propose that authors of  new methods pro-
vide information about basic characteristics of  the test along with presentation of  
it. The same also applies to the protocol of  the test. Each protocol should include 
description of  all essential parts (measurement procedure, arms position, elimi-
nation of  vision, stance, standing surface, number of  introductory trials, number 
of  trials, randomization of  tests, etc.) which importantly influence the balance.

Laboratory Tests of  Dynamic Balance

Dynamic body balance is required for normal daily activities, such as walking, 
running, and stair climbing. Sports activities also require proper balance control. 
Dynamic body balance (Figure 4) is the ability to maintain balance while moving, 
such as running, tumbling or walking. It can be maintained either on a moving 
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surface or while the body is moving. The assessment of  dynamic body balance 
during walking or running is even nowadays rather an exception then a rule. 
The reason probably lies in fact that the equipment needed for such experiment 
is more advanced, but on the other hand there has been very little research 
work done regarding this area, and moreover no standards were proposed. All 
commonly used tests of  dynamic balance are more or less simple, except tests 
on specially designed machines (namely EquiTest® and Biodex Balance System 
SD) that are quite expensive. In following sections we present all regularly used 
tests in the latest studies.

Figure 4. Example of  dynamic balance test – Clever balance board. Analysis of  
the test and parameters calculation is performed by a microprocessor 
installed in the device. 

The Star Excursion Balance Test (SEBT) is a functional test that 
incorporates a single-leg stance on one leg (e.g. right leg) whilst trying to reach as 
far as possible with the opposite leg (e.g. left leg). The participants stand in the 
center of  the grid with 4 lines at 45° between adjacent ones, forming a star like 
shape (Figure 5).
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Figure 5. SEBT test directions for left leg stance (AL - antero-lateral, A - anterior, 
AM - antero-medial, M - medial, PL - postero-medial, P - posterior, PL 
- postero-lateral and L – lateral). 

There are 8 individual directions possible and subject is required to reach 
out in these directions with the most distal part of  his reach foot. The eight 
directions consist of  antero-lateral, anterior, antero-medial, medial, postero-
medial, posterior, postero-lateral and lateral. A standard tape measure or a force 
plate can be used to quantify the distance the subject had reached from the center 
of  the grid (see Figure 1) to the point that the subject managed to reach along 
each diagonal line. The reliability of  the test was performed on young healthy 
subjects who performed 12 sessions with five trials to gain ICC of  0.86 (Kinzey 
& Armstrong, 1998). According to the number of  studies that included SEBT, 
it is the most frequently used test of  dynamic body balance – for review see: 
Herrington, Hatcher, Hatcher and McNicholas, 2009; Plisky, Rauh, Kaminski 
and Underwood, 2006; Sabin, Ebersole, Martindale, Price and Broglio, 2010.

The Bruininks-Oseretsky Test of  Motor Proficiency (BOTMP) (Cushing, 
Chia, James, Papsin, & Gordon, 2008; Deitz, Kartin, & Kopp, 2007; Levine, 1987) 
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is an individually administered test designed to assess motor skills in children 
ranging in age from four and 1/2 to fourteen and 1/2 years of  age. It has been 
described as the most outstanding instrument of  its kind, and one which fills a 
clinical void. The BOTMP is widely used by occupational therapists, educators, 
and psychologists and is often considered a necessary part of  diagnostic testing, 
especially for children with learning disabilities. This individually administered test 
includes 46 items, grouped into eight subtests. Subtests include: running speed 
and agility, balance, bilateral coordination, strength, upper-limb coordination, 
response speed, visual-motor control, and upper-limb speed and dexterity. Items 
are arranged into three composites, and yield a comprehensive index of  motor 
proficiency as well as separate measures of  gross and fine motor skills. For each 
of  these composites, normalized standard scores, percentile ranks, and stanines 
are available. Age equivalents are also available for the subtest scores. The entire 
battery takes about one hour to administer, or a short form can be administered 
in 20 minutes. Test-retest reliabilities for the battery composite range from 
0.86 to 0.89, and for the short form 0.84 to 0.87. The gross motor composite 
reliabilities are slightly higher than those of  the fine motor composite. Gross 
motor reliabilities range from 0.77 to 0.85, and fine motor composite reliabilities 
from 0.68 to 0.88. Individual subtest scores range from 0.29 to 0.89, and must 
be interpreted with extreme caution, if  at all.

Functional Reach Test (FRT) (Duncan, Weiner, Chandler, & Studenski, 
1990) is a single item test developed as a quick screen for balance problems in 
older adults. To perform the test a subject must be able to stand independently 
for at least 30 seconds without support and be able to flex the shoulder to at least 
90 degrees. A stick is attached to a wall at about shoulder height. The subject 
is positioned in front of  the stick and the examiner is about 2 to 3 meters away 
from the subject, viewing the subject from the side. The subject is instructed 
to stand with feet at shoulder distance apart and to make a fist and raise the 
arm up so that it is parallel to the floor. At this time the examiner takes an 
initial reading on the stick, usually spotting the knuckle of  the third metacarpal. 
The subject is instructed to reach forward along the stick without moving the 
feet. Any reaching strategy is allowed but the hand should remain in a fist. The 
examiner takes a reading on the stick of  the farthest reach attained by the subject 
without taking a step. The initial reading is subtracted from the final to obtain 
the functional reach score. For subjects that are unable to stand a modified 
FRT was developed by Lynch, Leahy and Barker (1998). High reliability (ICC 
between 0.85 and 0.94) for this test was reported. Question whether FRT really 
measure dynamic balance was raised in a study by Wernick-Robinson, Krebs and 
Giorgetti (1999). They conclude that FRT does not measure dynamic balance.
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The jump-landing test is a simple test of  dynamic postural stability, which 
can be defined as an individual’s ability to maintain balance while transitioning 
from a dynamic to a static state (Goldie, Bach, & Evans, 1989). The test is 
performed on a force plate. A subject performs a both leg jump, to approximately 
50% of  maximal height, and lands on a single leg. After landing, the subject 
remains motionless in a single leg stance for a predefined time (usually from 
10 to 30 seconds). Several parameters can be calculated for this test. The most 
common parameter calculated is the time to stabilization (Brown, Ross, Mynark, 
& Guskiewicz, 2004; Ross & Guskiewicz, 2003, 2004). The time to stabilization 
is defined as the time required to minimize resultant ground reaction forces of  a 
jump landing to within a range of  the baseline (static) ground reaction forces. As 
an aspect of  motor control for the lower extremity, time to stabilization depends 
on proprioceptive feedback and preprogrammed muscle patterns, as well as 
reflexive and voluntary muscle responses (Johnston, Howard, Cawley, & Losse, 
1998). Another parameter for jump-landing test is the dynamic postural stability 
index (Wikstrom, Tillman, Smith, & Borsa, 2005). This parameter is based on 
previous assessments of  single-leg stance and single-leg hop stabilization tests 
with the underlying premise that dynamic postural stability depends on lower 
extremity kinematics at landing as well as on muscular activation patterns and 
eccentric control. The reliability of  the time to stability and the dynamic postural 
stability index was assessed by Wikstrom et al. (2005). They observed higher ICC 
values (ICC = 0.96) for the dynamic postural stability index, while the time to 
stability ICC values were 0.66, 0.80 and 0.78 for medio-lateral, antero-posterior 
and vertical direction respectively.

A novel tool for the assessment of  dynamic body balance for healthy 
individual named clever balance board was presented by Sarabon, Mlaker and 
Markovic (2010). The clever balance board consists of  two main plates connected 
by an axis in horizontal plane and angle meter attached to the axis. That allows 
rotation of  one plate around second one while angle between them is measured 
during a test. Several parameters are calculated based on angle waveform 
acquired. Reliability of  these parameters was tested on a sample of  36 healthy 
male subjects. ICC values obtained were between 0.77 and 0.90 indicating that 
clever balance board could be a reliable tool for dynamic balance assessment in 
healthy and physically active individuals (Sarabon et al., 2010).

Active dynamic balance tracking test is a new technique for assessment 
of  dynamic body balance invented by our group. The idea was adopted from 
hand grip and position tracking tasks originating from motor control studies. 
A force plate and special software is needed to perform this test. A random 
curve that has to be followed by a subject is created with software. The subject 
is placed on the force plate in any stance, the random curve and real time center 
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of  pressure is projected on a wall in front of  the subject. The subject is asked to 
follow the random curve as good as possible with moving his center of  pressure. 
The random curve can move in medio-lateral or antero-posterior or in both 
directions at the same time.

Computerized dynamic photography is a quantitative method for accessing 
upright balance function under a variety of  tasks that effectively simulate 
conditions in daily life (Jacobson, Newman, & Kartush, 1997). The protocols 
are designed to eliminate sensory, motor and biomechanical components 
contributing to balance. The subject ability to maintain his balance is then 
analyzed. Special equipment was developed for this purpose (e.g. EquiTest, 
NeuroCom International and Balance System SD, Biodex) that includes different 
protocols of  testing. Computerized dynamic photography was well researched 
by scientists (Bergson & Sataloff, 2005; Hrysomallis, McLaughlin, & Goodman, 
2006; Mockford et al., 2010; Monsell, Furman, Herdman, Konrad, & Shepard, 
1997; Vanicek, Strike, McNaughton, & Polman, 2009; Whipple, Wolfson, Derby, 
Singh, & Tobin, 1993).

Many studies regarding ankle stability were performed by evaluating 
dynamic balance of  a subject. As found by previous studies (Arnold, De La 
Motte, Linens, & Ross, 2009; Brown & Mynark, 2007; Ross, Guskiewicz, Gross, 
& Yu, 2009), functional ankle stability/instability affects balance. Many studies 
considering this issue were conducted (Hale, Hertel, & Olmsted-Kramer, 
2007; Lin, Liu, Hsieh, & Lee, 2009; Martínez-Ramírez, Lecumberri, Gómez, 
& Izquierdo, 2010; McKeon et al., 2008; Munn, Sullivan, & Schneiders, 2010; 
Ozunlu, Basari, & Baltaci, 2010).

Conclusion

In this paper we presented a great part of  the tests, methods and parameters 
that are used to assess the ability of  human body balance. Presented tests differ 
in complexity, costs of  equipment required, amount of  time required and their 
purpose. The simplest tests are clinical and simple field test, while the most 
complex tests to perform are the dynamic balance tests. Similar, the simplest 
methods and parameters used to evaluate balance are used for clinical and simple 
field test. On the other hand, the most complex ones are used for dynamic and 
static balance tests. Basic metric characteristics of  methods are in most cases 
assessed on a limited population, therefore they cannot be considered for a 
general population. We propose that each new method is evaluated for all basic 
metric characteristics on a general population. However, we do not disagree with 
the proposal of  methods for the specific type of  population.
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Clinical and simple field test are today mainly used to assess balance on 
elderly population and very rarely on athletes. They are not proper for athletes, 
because in most cases they score maximum number of  points (some more 
difficult test can be exception here). Clinical test are widely used in risk for falls 
evaluation mainly on elderly population. As the sport science research devoted 
a great attention to the studies of  elderly population and their related health 
and prevention issues, the majority of  basic metric characteristics are assessed 
on this particular population. Nevertheless, evaluation of  some basic metric 
characteristics is for some tests irrelevant (when all subjects score the maximum 
number of  points) as reported by Sarabon and Omejec (2007). Therefore, 
scientists have to be aware of  this problem. In laboratory tests of  static balance, 
only one technique stands out, i.e. measurement of  COP sway on a force place. 
Some other techniques (e.g. magnetic recording devices) can be used to measure 
COP sway; however, they measure only the sway of  body part to which they are 
attached. Many methods and parameters for the analysis of  the COP sway were 
proposed. Some of  them are quite simple (e.g. SP, SV and SA) and some of  them 
require more knowledge about signal processing and time series analysis (e.g. SE 
and DFA). At this point, no method or parameter is the best in the interpretation 
of  balance, because this depends on a problem that needs to be explained. In 
general, the reliabilities of  those parameters for the specific population were 
seldom higher than 0.90. This may indicate that only one parameter could not 
model balance well enough. Thus, combinations of  parameters may explain 
(model) the behavior of  balance more completely. Application of  methods of  
machine learning or data mining tools could be useful in further research work 
of  the human body balance.

Dynamic body balance is more complicated to evaluate than static body 
balance. Thus, test require more equipment (also more advanced one) and also 
methods are more complex than the one used in static balance analysis. Among 
dynamic balance test, there are some very simple (e.g. SBAT and FRT), mainly 
used for clinical practice. On the other hand, very advanced equipment (e.g. 
EquiTest and Balance System SD) is also used in some clinical cases and more 
often in a research work. As mentioned previously, regarding the analysis of  
the COP sway, also for the analysis of  dynamic body balance could be more 
effectively and comprehensively analyzed with application of  methods of  
machine learning or data mining tools.
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